Nitrogen in carbon nanotubes

Nitrogen is an important impurity for doping carbon nanotubes (CNTs). It increases the conductivity of nanotubes, which is an important feature for field-effect transistors, emission and other nanoelectronic devices based on CNTs. In this work, we carried out a complex study of the behavior of nitro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diamond and related materials 2020-11, Vol.109, p.108042, Article 108042
Hauptverfasser: Bulyarskiy, Sergey V., Bogdanova, Daria A., Gusarov, Georgy G., Lakalin, Alexander V., Pavlov, Alexander A., Ryazanov, Roman M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 108042
container_title Diamond and related materials
container_volume 109
creator Bulyarskiy, Sergey V.
Bogdanova, Daria A.
Gusarov, Georgy G.
Lakalin, Alexander V.
Pavlov, Alexander A.
Ryazanov, Roman M.
description Nitrogen is an important impurity for doping carbon nanotubes (CNTs). It increases the conductivity of nanotubes, which is an important feature for field-effect transistors, emission and other nanoelectronic devices based on CNTs. In this work, we carried out a complex study of the behavior of nitrogen in nanotubes, its effect on their morphology, X-ray photoelectron spectroscopy (XPS) and Raman scattering spectra. The aim of the article is to determine the binding energies of various types of nitrogen distribution in the graphene lattice of carbon nanotubes. The goal was achieved by comparing the XPS spectra, differential gravimetric analysis, and quantum chemical calculations. It was found that a graphite-like state has the highest binding energy, which is energetically favorable during doping and creates donor centers for carbon nanotubes. Therefore, doping with nitrogen increases the conductivity of the nanotubes in most cases. [Display omitted] •A complex study of N behavior in MWCNTs•Manifestation of lattice distortion in Raman spectra•A new method to determine the N concentration in CNTs•Quantum-chemical calculation of the binding energy for N in N-doped CNT•Thermodynamic parameters for N-doped CNT based on joint spectroscopic analysis
doi_str_mv 10.1016/j.diamond.2020.108042
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000579819400041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925963520305951</els_id><sourcerecordid>2465476505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-7cbb9b9db62ac5040ebd11a9bd8aef2b652e8bf74aba63eac9a4d2441896925a3</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouH78A4UFj9J1kiZpcxIpfsGiFz2HJE0li5usSar4783SxaueZhjeZ2Z4EDrHsMCA-dVq0Tu1Dr5fECDbWQuU7KEZbhtRAXCyj2YgCKsEr9khOkppBYCJoHiGzp5cjuHN-rnzc6OiDn7ulQ951DadoINBvSd7uqvH6PXu9qV7qJbP94_dzbIydd3kqjFaCy16zYkyDChY3WOshO5bZQeiOSO21UNDlVa8tsoIRXtCKW4FL2-p-hhdTHs3MXyMNmW5CmP05aQklDPacAaspNiUMjGkFO0gN9GtVfyWGORWhFzJnQi5FSEnEYVrJ-7L6jAk46w39pcFANaIFgtaOoo7l1V2wXdh9Lmgl_9HS_p6Stvi6tPZKHdE76I1WfbB_fHqD7NuiMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465476505</pqid></control><display><type>article</type><title>Nitrogen in carbon nanotubes</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Bulyarskiy, Sergey V. ; Bogdanova, Daria A. ; Gusarov, Georgy G. ; Lakalin, Alexander V. ; Pavlov, Alexander A. ; Ryazanov, Roman M.</creator><creatorcontrib>Bulyarskiy, Sergey V. ; Bogdanova, Daria A. ; Gusarov, Georgy G. ; Lakalin, Alexander V. ; Pavlov, Alexander A. ; Ryazanov, Roman M.</creatorcontrib><description>Nitrogen is an important impurity for doping carbon nanotubes (CNTs). It increases the conductivity of nanotubes, which is an important feature for field-effect transistors, emission and other nanoelectronic devices based on CNTs. In this work, we carried out a complex study of the behavior of nitrogen in nanotubes, its effect on their morphology, X-ray photoelectron spectroscopy (XPS) and Raman scattering spectra. The aim of the article is to determine the binding energies of various types of nitrogen distribution in the graphene lattice of carbon nanotubes. The goal was achieved by comparing the XPS spectra, differential gravimetric analysis, and quantum chemical calculations. It was found that a graphite-like state has the highest binding energy, which is energetically favorable during doping and creates donor centers for carbon nanotubes. Therefore, doping with nitrogen increases the conductivity of the nanotubes in most cases. [Display omitted] •A complex study of N behavior in MWCNTs•Manifestation of lattice distortion in Raman spectra•A new method to determine the N concentration in CNTs•Quantum-chemical calculation of the binding energy for N in N-doped CNT•Thermodynamic parameters for N-doped CNT based on joint spectroscopic analysis</description><identifier>ISSN: 0925-9635</identifier><identifier>EISSN: 1879-0062</identifier><identifier>DOI: 10.1016/j.diamond.2020.108042</identifier><language>eng</language><publisher>LAUSANNE: Elsevier B.V</publisher><subject>Binding energy ; Binding energy of nitrogen within a graphene lattice ; Carbon ; Carbon nanotubes ; Doping ; Field effect transistors ; Graphene ; Gravimetric analysis ; Materials Science ; Materials Science, Coatings &amp; Films ; Materials Science, Multidisciplinary ; Morphology ; Nanoelectronics ; Nanotechnology devices ; Nitrogen ; Photoelectrons ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Quantum chemistry ; Raman spectra ; Science &amp; Technology ; Semiconductor devices ; Spectrum analysis ; Technology ; X ray photoelectron spectroscopy</subject><ispartof>Diamond and related materials, 2020-11, Vol.109, p.108042, Article 108042</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>19</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000579819400041</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c337t-7cbb9b9db62ac5040ebd11a9bd8aef2b652e8bf74aba63eac9a4d2441896925a3</citedby><cites>FETCH-LOGICAL-c337t-7cbb9b9db62ac5040ebd11a9bd8aef2b652e8bf74aba63eac9a4d2441896925a3</cites><orcidid>0000-0001-5789-6619 ; 0000-0002-9777-746X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.diamond.2020.108042$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids></links><search><creatorcontrib>Bulyarskiy, Sergey V.</creatorcontrib><creatorcontrib>Bogdanova, Daria A.</creatorcontrib><creatorcontrib>Gusarov, Georgy G.</creatorcontrib><creatorcontrib>Lakalin, Alexander V.</creatorcontrib><creatorcontrib>Pavlov, Alexander A.</creatorcontrib><creatorcontrib>Ryazanov, Roman M.</creatorcontrib><title>Nitrogen in carbon nanotubes</title><title>Diamond and related materials</title><addtitle>DIAM RELAT MATER</addtitle><description>Nitrogen is an important impurity for doping carbon nanotubes (CNTs). It increases the conductivity of nanotubes, which is an important feature for field-effect transistors, emission and other nanoelectronic devices based on CNTs. In this work, we carried out a complex study of the behavior of nitrogen in nanotubes, its effect on their morphology, X-ray photoelectron spectroscopy (XPS) and Raman scattering spectra. The aim of the article is to determine the binding energies of various types of nitrogen distribution in the graphene lattice of carbon nanotubes. The goal was achieved by comparing the XPS spectra, differential gravimetric analysis, and quantum chemical calculations. It was found that a graphite-like state has the highest binding energy, which is energetically favorable during doping and creates donor centers for carbon nanotubes. Therefore, doping with nitrogen increases the conductivity of the nanotubes in most cases. [Display omitted] •A complex study of N behavior in MWCNTs•Manifestation of lattice distortion in Raman spectra•A new method to determine the N concentration in CNTs•Quantum-chemical calculation of the binding energy for N in N-doped CNT•Thermodynamic parameters for N-doped CNT based on joint spectroscopic analysis</description><subject>Binding energy</subject><subject>Binding energy of nitrogen within a graphene lattice</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Doping</subject><subject>Field effect transistors</subject><subject>Graphene</subject><subject>Gravimetric analysis</subject><subject>Materials Science</subject><subject>Materials Science, Coatings &amp; Films</subject><subject>Materials Science, Multidisciplinary</subject><subject>Morphology</subject><subject>Nanoelectronics</subject><subject>Nanotechnology devices</subject><subject>Nitrogen</subject><subject>Photoelectrons</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Quantum chemistry</subject><subject>Raman spectra</subject><subject>Science &amp; Technology</subject><subject>Semiconductor devices</subject><subject>Spectrum analysis</subject><subject>Technology</subject><subject>X ray photoelectron spectroscopy</subject><issn>0925-9635</issn><issn>1879-0062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkE1LxDAQhoMouH78A4UFj9J1kiZpcxIpfsGiFz2HJE0li5usSar4783SxaueZhjeZ2Z4EDrHsMCA-dVq0Tu1Dr5fECDbWQuU7KEZbhtRAXCyj2YgCKsEr9khOkppBYCJoHiGzp5cjuHN-rnzc6OiDn7ulQ951DadoINBvSd7uqvH6PXu9qV7qJbP94_dzbIydd3kqjFaCy16zYkyDChY3WOshO5bZQeiOSO21UNDlVa8tsoIRXtCKW4FL2-p-hhdTHs3MXyMNmW5CmP05aQklDPacAaspNiUMjGkFO0gN9GtVfyWGORWhFzJnQi5FSEnEYVrJ-7L6jAk46w39pcFANaIFgtaOoo7l1V2wXdh9Lmgl_9HS_p6Stvi6tPZKHdE76I1WfbB_fHqD7NuiMA</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Bulyarskiy, Sergey V.</creator><creator>Bogdanova, Daria A.</creator><creator>Gusarov, Georgy G.</creator><creator>Lakalin, Alexander V.</creator><creator>Pavlov, Alexander A.</creator><creator>Ryazanov, Roman M.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier BV</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-5789-6619</orcidid><orcidid>https://orcid.org/0000-0002-9777-746X</orcidid></search><sort><creationdate>202011</creationdate><title>Nitrogen in carbon nanotubes</title><author>Bulyarskiy, Sergey V. ; Bogdanova, Daria A. ; Gusarov, Georgy G. ; Lakalin, Alexander V. ; Pavlov, Alexander A. ; Ryazanov, Roman M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-7cbb9b9db62ac5040ebd11a9bd8aef2b652e8bf74aba63eac9a4d2441896925a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Binding energy</topic><topic>Binding energy of nitrogen within a graphene lattice</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Doping</topic><topic>Field effect transistors</topic><topic>Graphene</topic><topic>Gravimetric analysis</topic><topic>Materials Science</topic><topic>Materials Science, Coatings &amp; Films</topic><topic>Materials Science, Multidisciplinary</topic><topic>Morphology</topic><topic>Nanoelectronics</topic><topic>Nanotechnology devices</topic><topic>Nitrogen</topic><topic>Photoelectrons</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Quantum chemistry</topic><topic>Raman spectra</topic><topic>Science &amp; Technology</topic><topic>Semiconductor devices</topic><topic>Spectrum analysis</topic><topic>Technology</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bulyarskiy, Sergey V.</creatorcontrib><creatorcontrib>Bogdanova, Daria A.</creatorcontrib><creatorcontrib>Gusarov, Georgy G.</creatorcontrib><creatorcontrib>Lakalin, Alexander V.</creatorcontrib><creatorcontrib>Pavlov, Alexander A.</creatorcontrib><creatorcontrib>Ryazanov, Roman M.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Diamond and related materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bulyarskiy, Sergey V.</au><au>Bogdanova, Daria A.</au><au>Gusarov, Georgy G.</au><au>Lakalin, Alexander V.</au><au>Pavlov, Alexander A.</au><au>Ryazanov, Roman M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen in carbon nanotubes</atitle><jtitle>Diamond and related materials</jtitle><stitle>DIAM RELAT MATER</stitle><date>2020-11</date><risdate>2020</risdate><volume>109</volume><spage>108042</spage><pages>108042-</pages><artnum>108042</artnum><issn>0925-9635</issn><eissn>1879-0062</eissn><abstract>Nitrogen is an important impurity for doping carbon nanotubes (CNTs). It increases the conductivity of nanotubes, which is an important feature for field-effect transistors, emission and other nanoelectronic devices based on CNTs. In this work, we carried out a complex study of the behavior of nitrogen in nanotubes, its effect on their morphology, X-ray photoelectron spectroscopy (XPS) and Raman scattering spectra. The aim of the article is to determine the binding energies of various types of nitrogen distribution in the graphene lattice of carbon nanotubes. The goal was achieved by comparing the XPS spectra, differential gravimetric analysis, and quantum chemical calculations. It was found that a graphite-like state has the highest binding energy, which is energetically favorable during doping and creates donor centers for carbon nanotubes. Therefore, doping with nitrogen increases the conductivity of the nanotubes in most cases. [Display omitted] •A complex study of N behavior in MWCNTs•Manifestation of lattice distortion in Raman spectra•A new method to determine the N concentration in CNTs•Quantum-chemical calculation of the binding energy for N in N-doped CNT•Thermodynamic parameters for N-doped CNT based on joint spectroscopic analysis</abstract><cop>LAUSANNE</cop><pub>Elsevier B.V</pub><doi>10.1016/j.diamond.2020.108042</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5789-6619</orcidid><orcidid>https://orcid.org/0000-0002-9777-746X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-9635
ispartof Diamond and related materials, 2020-11, Vol.109, p.108042, Article 108042
issn 0925-9635
1879-0062
language eng
recordid cdi_webofscience_primary_000579819400041
source Elsevier ScienceDirect Journals Complete
subjects Binding energy
Binding energy of nitrogen within a graphene lattice
Carbon
Carbon nanotubes
Doping
Field effect transistors
Graphene
Gravimetric analysis
Materials Science
Materials Science, Coatings & Films
Materials Science, Multidisciplinary
Morphology
Nanoelectronics
Nanotechnology devices
Nitrogen
Photoelectrons
Physical Sciences
Physics
Physics, Applied
Physics, Condensed Matter
Quantum chemistry
Raman spectra
Science & Technology
Semiconductor devices
Spectrum analysis
Technology
X ray photoelectron spectroscopy
title Nitrogen in carbon nanotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T06%3A50%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen%20in%20carbon%20nanotubes&rft.jtitle=Diamond%20and%20related%20materials&rft.au=Bulyarskiy,%20Sergey%20V.&rft.date=2020-11&rft.volume=109&rft.spage=108042&rft.pages=108042-&rft.artnum=108042&rft.issn=0925-9635&rft.eissn=1879-0062&rft_id=info:doi/10.1016/j.diamond.2020.108042&rft_dat=%3Cproquest_webof%3E2465476505%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465476505&rft_id=info:pmid/&rft_els_id=S0925963520305951&rfr_iscdi=true