Powder incorporation and spatter formation in high deposition rate blown powder directed energy deposition

[Display omitted] •Islands of floating powder grains were observed in Laser Metal Deposition melt pools.•Mechanisms of powder incorporation into laser cladding melt pools are discussed.•Mechanisms of spatter ejection from cladding melt pools have been identified. A high deposition rate blown powder...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Additive manufacturing 2020-10, Vol.35, p.101413, Article 101413
Hauptverfasser: Siva Prasad, Himani, Brueckner, Frank, Kaplan, Alexander F.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 101413
container_title Additive manufacturing
container_volume 35
creator Siva Prasad, Himani
Brueckner, Frank
Kaplan, Alexander F.H.
description [Display omitted] •Islands of floating powder grains were observed in Laser Metal Deposition melt pools.•Mechanisms of powder incorporation into laser cladding melt pools are discussed.•Mechanisms of spatter ejection from cladding melt pools have been identified. A high deposition rate blown powder directed energy deposition process is presented. Clad tracks are deposited and the process is observed by high-speed imaging. An island of unmelted powder forms inside the melt pool, in the centre of the laser spot, which can be attributed to the highly focussed powder flow and the laser beam configuration used. On contact with the melt pool, the powder grains melt to join the melt pool, or they overcome surface tension and are engulfed by the melt. Powder grains can also incorporate into a mushy zone that may be present on the powder island. The powder island appears to rotate in the melt pool and incorporates relatively slowly. The speed of rotation is connected to the size of the island, which also depends on the energy density used. Spatter can form from the edges of the melt pool or from areas around the island when molten metal droplets burst. Frames from high-speed videos are presented and reasons for the various phenomena observed are discussed.
doi_str_mv 10.1016/j.addma.2020.101413
format Article
fullrecord <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000576651400005CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2214860420307855</els_id><sourcerecordid>S2214860420307855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-f0371862350ea6578b25243db0ab42c8cfece197987e33ed66746bf72c8a12b43</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhiMEElXpL2DJDin-SBx3YKjKp1QJBmC1HPvSOmrjyE6J-u9xk6piQkx3unuf0-mJomuMphhhdldNpdZbOSWI9JMU07NoRAhOk5xjdH7sOUPpZTTxvkII4YzmM05GUfVuOw0uNrWyrrFOtsbWsax17BvZtmFTWrcdpqaO12a1jjU01pt-FPIQFxvb1XEzHNLGgWpBx1CDW-1_ha-ii1JuPEyOdRx9Pj1-LF6S5dvz62K-TBTlWZuUiOaYM0IzBJJlOS9IRlKqCySLlCiuSlCAZ-H9HCgFzViesqLMw0piUqR0HN0Od30Hza4QjTNb6fbCSiMezNdcWLcSm3YnOEIzFOJ0iCtnvXdQngCMxEGwqEQvWBwEi0FwoPhAdVDY0isDtYITGQxnOWMZTtGhXZi2N7iwu7oN6M3_0ZC-H9IQlH0bcOJIDKKFtubPR38Ac6Snlg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Powder incorporation and spatter formation in high deposition rate blown powder directed energy deposition</title><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Siva Prasad, Himani ; Brueckner, Frank ; Kaplan, Alexander F.H.</creator><creatorcontrib>Siva Prasad, Himani ; Brueckner, Frank ; Kaplan, Alexander F.H.</creatorcontrib><description>[Display omitted] •Islands of floating powder grains were observed in Laser Metal Deposition melt pools.•Mechanisms of powder incorporation into laser cladding melt pools are discussed.•Mechanisms of spatter ejection from cladding melt pools have been identified. A high deposition rate blown powder directed energy deposition process is presented. Clad tracks are deposited and the process is observed by high-speed imaging. An island of unmelted powder forms inside the melt pool, in the centre of the laser spot, which can be attributed to the highly focussed powder flow and the laser beam configuration used. On contact with the melt pool, the powder grains melt to join the melt pool, or they overcome surface tension and are engulfed by the melt. Powder grains can also incorporate into a mushy zone that may be present on the powder island. The powder island appears to rotate in the melt pool and incorporates relatively slowly. The speed of rotation is connected to the size of the island, which also depends on the energy density used. Spatter can form from the edges of the melt pool or from areas around the island when molten metal droplets burst. Frames from high-speed videos are presented and reasons for the various phenomena observed are discussed.</description><identifier>ISSN: 2214-8604</identifier><identifier>EISSN: 2214-7810</identifier><identifier>DOI: 10.1016/j.addma.2020.101413</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier B.V</publisher><subject>Engineering ; Engineering, Manufacturing ; High-speed imaging ; Island formation ; Laser cladding ; Laser Metal Deposition ; Manufacturing Systems Engineering ; Materials Science ; Materials Science, Multidisciplinary ; Powder catchment ; Produktionsutveckling ; Science &amp; Technology ; Spatter ; Technology</subject><ispartof>Additive manufacturing, 2020-10, Vol.35, p.101413, Article 101413</ispartof><rights>2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>56</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000576651400005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c385t-f0371862350ea6578b25243db0ab42c8cfece197987e33ed66746bf72c8a12b43</citedby><cites>FETCH-LOGICAL-c385t-f0371862350ea6578b25243db0ab42c8cfece197987e33ed66746bf72c8a12b43</cites><orcidid>0000-0002-7213-0002 ; 0000-0002-3569-6795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930,28253</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-80090$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Siva Prasad, Himani</creatorcontrib><creatorcontrib>Brueckner, Frank</creatorcontrib><creatorcontrib>Kaplan, Alexander F.H.</creatorcontrib><title>Powder incorporation and spatter formation in high deposition rate blown powder directed energy deposition</title><title>Additive manufacturing</title><addtitle>ADDIT MANUF</addtitle><description>[Display omitted] •Islands of floating powder grains were observed in Laser Metal Deposition melt pools.•Mechanisms of powder incorporation into laser cladding melt pools are discussed.•Mechanisms of spatter ejection from cladding melt pools have been identified. A high deposition rate blown powder directed energy deposition process is presented. Clad tracks are deposited and the process is observed by high-speed imaging. An island of unmelted powder forms inside the melt pool, in the centre of the laser spot, which can be attributed to the highly focussed powder flow and the laser beam configuration used. On contact with the melt pool, the powder grains melt to join the melt pool, or they overcome surface tension and are engulfed by the melt. Powder grains can also incorporate into a mushy zone that may be present on the powder island. The powder island appears to rotate in the melt pool and incorporates relatively slowly. The speed of rotation is connected to the size of the island, which also depends on the energy density used. Spatter can form from the edges of the melt pool or from areas around the island when molten metal droplets burst. Frames from high-speed videos are presented and reasons for the various phenomena observed are discussed.</description><subject>Engineering</subject><subject>Engineering, Manufacturing</subject><subject>High-speed imaging</subject><subject>Island formation</subject><subject>Laser cladding</subject><subject>Laser Metal Deposition</subject><subject>Manufacturing Systems Engineering</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Powder catchment</subject><subject>Produktionsutveckling</subject><subject>Science &amp; Technology</subject><subject>Spatter</subject><subject>Technology</subject><issn>2214-8604</issn><issn>2214-7810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkD1PwzAQhiMEElXpL2DJDin-SBx3YKjKp1QJBmC1HPvSOmrjyE6J-u9xk6piQkx3unuf0-mJomuMphhhdldNpdZbOSWI9JMU07NoRAhOk5xjdH7sOUPpZTTxvkII4YzmM05GUfVuOw0uNrWyrrFOtsbWsax17BvZtmFTWrcdpqaO12a1jjU01pt-FPIQFxvb1XEzHNLGgWpBx1CDW-1_ha-ii1JuPEyOdRx9Pj1-LF6S5dvz62K-TBTlWZuUiOaYM0IzBJJlOS9IRlKqCySLlCiuSlCAZ-H9HCgFzViesqLMw0piUqR0HN0Od30Hza4QjTNb6fbCSiMezNdcWLcSm3YnOEIzFOJ0iCtnvXdQngCMxEGwqEQvWBwEi0FwoPhAdVDY0isDtYITGQxnOWMZTtGhXZi2N7iwu7oN6M3_0ZC-H9IQlH0bcOJIDKKFtubPR38Ac6Snlg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Siva Prasad, Himani</creator><creator>Brueckner, Frank</creator><creator>Kaplan, Alexander F.H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><orcidid>https://orcid.org/0000-0002-7213-0002</orcidid><orcidid>https://orcid.org/0000-0002-3569-6795</orcidid></search><sort><creationdate>20201001</creationdate><title>Powder incorporation and spatter formation in high deposition rate blown powder directed energy deposition</title><author>Siva Prasad, Himani ; Brueckner, Frank ; Kaplan, Alexander F.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-f0371862350ea6578b25243db0ab42c8cfece197987e33ed66746bf72c8a12b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Engineering</topic><topic>Engineering, Manufacturing</topic><topic>High-speed imaging</topic><topic>Island formation</topic><topic>Laser cladding</topic><topic>Laser Metal Deposition</topic><topic>Manufacturing Systems Engineering</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Powder catchment</topic><topic>Produktionsutveckling</topic><topic>Science &amp; Technology</topic><topic>Spatter</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siva Prasad, Himani</creatorcontrib><creatorcontrib>Brueckner, Frank</creatorcontrib><creatorcontrib>Kaplan, Alexander F.H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Additive manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siva Prasad, Himani</au><au>Brueckner, Frank</au><au>Kaplan, Alexander F.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Powder incorporation and spatter formation in high deposition rate blown powder directed energy deposition</atitle><jtitle>Additive manufacturing</jtitle><stitle>ADDIT MANUF</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>35</volume><spage>101413</spage><pages>101413-</pages><artnum>101413</artnum><issn>2214-8604</issn><eissn>2214-7810</eissn><abstract>[Display omitted] •Islands of floating powder grains were observed in Laser Metal Deposition melt pools.•Mechanisms of powder incorporation into laser cladding melt pools are discussed.•Mechanisms of spatter ejection from cladding melt pools have been identified. A high deposition rate blown powder directed energy deposition process is presented. Clad tracks are deposited and the process is observed by high-speed imaging. An island of unmelted powder forms inside the melt pool, in the centre of the laser spot, which can be attributed to the highly focussed powder flow and the laser beam configuration used. On contact with the melt pool, the powder grains melt to join the melt pool, or they overcome surface tension and are engulfed by the melt. Powder grains can also incorporate into a mushy zone that may be present on the powder island. The powder island appears to rotate in the melt pool and incorporates relatively slowly. The speed of rotation is connected to the size of the island, which also depends on the energy density used. Spatter can form from the edges of the melt pool or from areas around the island when molten metal droplets burst. Frames from high-speed videos are presented and reasons for the various phenomena observed are discussed.</abstract><cop>AMSTERDAM</cop><pub>Elsevier B.V</pub><doi>10.1016/j.addma.2020.101413</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7213-0002</orcidid><orcidid>https://orcid.org/0000-0002-3569-6795</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2214-8604
ispartof Additive manufacturing, 2020-10, Vol.35, p.101413, Article 101413
issn 2214-8604
2214-7810
language eng
recordid cdi_webofscience_primary_000576651400005CitationCount
source Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects Engineering
Engineering, Manufacturing
High-speed imaging
Island formation
Laser cladding
Laser Metal Deposition
Manufacturing Systems Engineering
Materials Science
Materials Science, Multidisciplinary
Powder catchment
Produktionsutveckling
Science & Technology
Spatter
Technology
title Powder incorporation and spatter formation in high deposition rate blown powder directed energy deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A57%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Powder%20incorporation%20and%20spatter%20formation%20in%20high%20deposition%20rate%20blown%20powder%20directed%20energy%20deposition&rft.jtitle=Additive%20manufacturing&rft.au=Siva%20Prasad,%20Himani&rft.date=2020-10-01&rft.volume=35&rft.spage=101413&rft.pages=101413-&rft.artnum=101413&rft.issn=2214-8604&rft.eissn=2214-7810&rft_id=info:doi/10.1016/j.addma.2020.101413&rft_dat=%3Celsevier_webof%3ES2214860420307855%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S2214860420307855&rfr_iscdi=true