Prediction of interlayer strength in material extrusion additive manufacturing

[Display omitted] •In-line rheometer and melt pressure transducers were used to understand the Material Extrusion process.•Melt pressure and contact pressures correlate with interlayer contact.•Relaxation times and transient heat analysis enable prediction of interlayer diffusion.•In-line sensors pl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Additive manufacturing 2020-10, Vol.35, p.101368, Article 101368
Hauptverfasser: Coogan, Timothy J, Kazmer, David O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 101368
container_title Additive manufacturing
container_volume 35
creator Coogan, Timothy J
Kazmer, David O
description [Display omitted] •In-line rheometer and melt pressure transducers were used to understand the Material Extrusion process.•Melt pressure and contact pressures correlate with interlayer contact.•Relaxation times and transient heat analysis enable prediction of interlayer diffusion.•In-line sensors plus contact and diffusion equations provide real-time calculation and monitoring of interlayer strength. The interlayer strengths of parts produced through material extrusion (also referred to as fused filament fabrication or FFF) suffer due to poor interlayer contact and insufficient diffusion. A model for predicting interlayer contact, based on pressure-driven flow, is combined with a model for polymer chain diffusion to predict the interlayer strength (aka, bond strength) of material extrusion parts. Interlayer contact is predicted based on in-line pressure measurements while diffusion is predicted based on in-line temperature and viscosity measurements, demonstrating that a combination of the appropriate in-line sensors and models can be used for real-time monitoring and process control. The interlayer strength model is successfully validated against strength measurements of parts made with high impact polystyrene, indicating that the strength of all parts suffers due to incomplete interlayer contact while only some parts suffered from incomplete diffusive healing. The melt pressure and in-line rheological measurements have proven extremely valuable for understanding the material extrusion process, optimizing quality, and monitoring consistency. Practical insights from the model are provided about how to select appropriate materials and processing conditions, and it concludes with a demonstration of using the in-line sensors and real-time modeling for defect detection.
doi_str_mv 10.1016/j.addma.2020.101368
format Article
fullrecord <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000576651200007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2214860420307405</els_id><sourcerecordid>S2214860420307405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-10ba9d6c0bc573c5122e4eb8d65832d2beb6c41330fd25bcad890a7c8d8406a53</originalsourceid><addsrcrecordid>eNqNkL1OwzAURi0EElXpE7BkRynXduK4AwOK-JMqYIDZcuyb4qpNkOMU-vY4TcWImHz1-Tv21SHkksKcAhXX67m2dqvnDNgh4UKekAljNEsLSeH0OEsB2TmZdd0aAGjOi4VkE_L86tE6E1zbJG2duCag3-g9-qQLHptV-IhZstUxdnqT4HfwfTeU458uuB3Gu6avtQm9d83qgpzVetPh7HhOyfv93Vv5mC5fHp7K22VqOPCQUqj0wgoDlckLbnLKGGZYSStyyZllFVbCZJRzqC3LK6OtXIAujLQyA6FzPiV8fNf4tus81urTu632e0VBDVbUWh2sqMGKGq1E6mqkvrBq6844bAz-klFLXggRl4kTFLEt_98uXdCDxLLtmxDRmxHF6GDn0Ksjbp1HE5Rt3Z-L_gDAK43p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prediction of interlayer strength in material extrusion additive manufacturing</title><source>Alma/SFX Local Collection</source><creator>Coogan, Timothy J ; Kazmer, David O</creator><creatorcontrib>Coogan, Timothy J ; Kazmer, David O</creatorcontrib><description>[Display omitted] •In-line rheometer and melt pressure transducers were used to understand the Material Extrusion process.•Melt pressure and contact pressures correlate with interlayer contact.•Relaxation times and transient heat analysis enable prediction of interlayer diffusion.•In-line sensors plus contact and diffusion equations provide real-time calculation and monitoring of interlayer strength. The interlayer strengths of parts produced through material extrusion (also referred to as fused filament fabrication or FFF) suffer due to poor interlayer contact and insufficient diffusion. A model for predicting interlayer contact, based on pressure-driven flow, is combined with a model for polymer chain diffusion to predict the interlayer strength (aka, bond strength) of material extrusion parts. Interlayer contact is predicted based on in-line pressure measurements while diffusion is predicted based on in-line temperature and viscosity measurements, demonstrating that a combination of the appropriate in-line sensors and models can be used for real-time monitoring and process control. The interlayer strength model is successfully validated against strength measurements of parts made with high impact polystyrene, indicating that the strength of all parts suffers due to incomplete interlayer contact while only some parts suffered from incomplete diffusive healing. The melt pressure and in-line rheological measurements have proven extremely valuable for understanding the material extrusion process, optimizing quality, and monitoring consistency. Practical insights from the model are provided about how to select appropriate materials and processing conditions, and it concludes with a demonstration of using the in-line sensors and real-time modeling for defect detection.</description><identifier>ISSN: 2214-8604</identifier><identifier>EISSN: 2214-7810</identifier><identifier>DOI: 10.1016/j.addma.2020.101368</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier B.V</publisher><subject>3D printing ; Additive manufacturing ; Engineering ; Engineering, Manufacturing ; FDM ; FFF ; Fused deposition modeling ; Fused filament fabrication ; In-Line ; In-Line rheometer ; In-Line sensor ; Material extrusion ; Materials Science ; Materials Science, Multidisciplinary ; On-Line ; Plateau modulus ; Pressure transducer ; Relaxation time ; Rheology ; Rheometer ; Science &amp; Technology ; Strength ; Technology ; Thermocouple ; Viscosity</subject><ispartof>Additive manufacturing, 2020-10, Vol.35, p.101368, Article 101368</ispartof><rights>2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>109</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000576651200007</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c303t-10ba9d6c0bc573c5122e4eb8d65832d2beb6c41330fd25bcad890a7c8d8406a53</citedby><cites>FETCH-LOGICAL-c303t-10ba9d6c0bc573c5122e4eb8d65832d2beb6c41330fd25bcad890a7c8d8406a53</cites><orcidid>0000-0002-1166-4043</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Coogan, Timothy J</creatorcontrib><creatorcontrib>Kazmer, David O</creatorcontrib><title>Prediction of interlayer strength in material extrusion additive manufacturing</title><title>Additive manufacturing</title><addtitle>ADDIT MANUF</addtitle><description>[Display omitted] •In-line rheometer and melt pressure transducers were used to understand the Material Extrusion process.•Melt pressure and contact pressures correlate with interlayer contact.•Relaxation times and transient heat analysis enable prediction of interlayer diffusion.•In-line sensors plus contact and diffusion equations provide real-time calculation and monitoring of interlayer strength. The interlayer strengths of parts produced through material extrusion (also referred to as fused filament fabrication or FFF) suffer due to poor interlayer contact and insufficient diffusion. A model for predicting interlayer contact, based on pressure-driven flow, is combined with a model for polymer chain diffusion to predict the interlayer strength (aka, bond strength) of material extrusion parts. Interlayer contact is predicted based on in-line pressure measurements while diffusion is predicted based on in-line temperature and viscosity measurements, demonstrating that a combination of the appropriate in-line sensors and models can be used for real-time monitoring and process control. The interlayer strength model is successfully validated against strength measurements of parts made with high impact polystyrene, indicating that the strength of all parts suffers due to incomplete interlayer contact while only some parts suffered from incomplete diffusive healing. The melt pressure and in-line rheological measurements have proven extremely valuable for understanding the material extrusion process, optimizing quality, and monitoring consistency. Practical insights from the model are provided about how to select appropriate materials and processing conditions, and it concludes with a demonstration of using the in-line sensors and real-time modeling for defect detection.</description><subject>3D printing</subject><subject>Additive manufacturing</subject><subject>Engineering</subject><subject>Engineering, Manufacturing</subject><subject>FDM</subject><subject>FFF</subject><subject>Fused deposition modeling</subject><subject>Fused filament fabrication</subject><subject>In-Line</subject><subject>In-Line rheometer</subject><subject>In-Line sensor</subject><subject>Material extrusion</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>On-Line</subject><subject>Plateau modulus</subject><subject>Pressure transducer</subject><subject>Relaxation time</subject><subject>Rheology</subject><subject>Rheometer</subject><subject>Science &amp; Technology</subject><subject>Strength</subject><subject>Technology</subject><subject>Thermocouple</subject><subject>Viscosity</subject><issn>2214-8604</issn><issn>2214-7810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkL1OwzAURi0EElXpE7BkRynXduK4AwOK-JMqYIDZcuyb4qpNkOMU-vY4TcWImHz1-Tv21SHkksKcAhXX67m2dqvnDNgh4UKekAljNEsLSeH0OEsB2TmZdd0aAGjOi4VkE_L86tE6E1zbJG2duCag3-g9-qQLHptV-IhZstUxdnqT4HfwfTeU458uuB3Gu6avtQm9d83qgpzVetPh7HhOyfv93Vv5mC5fHp7K22VqOPCQUqj0wgoDlckLbnLKGGZYSStyyZllFVbCZJRzqC3LK6OtXIAujLQyA6FzPiV8fNf4tus81urTu632e0VBDVbUWh2sqMGKGq1E6mqkvrBq6844bAz-klFLXggRl4kTFLEt_98uXdCDxLLtmxDRmxHF6GDn0Ksjbp1HE5Rt3Z-L_gDAK43p</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Coogan, Timothy J</creator><creator>Kazmer, David O</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1166-4043</orcidid></search><sort><creationdate>202010</creationdate><title>Prediction of interlayer strength in material extrusion additive manufacturing</title><author>Coogan, Timothy J ; Kazmer, David O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-10ba9d6c0bc573c5122e4eb8d65832d2beb6c41330fd25bcad890a7c8d8406a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D printing</topic><topic>Additive manufacturing</topic><topic>Engineering</topic><topic>Engineering, Manufacturing</topic><topic>FDM</topic><topic>FFF</topic><topic>Fused deposition modeling</topic><topic>Fused filament fabrication</topic><topic>In-Line</topic><topic>In-Line rheometer</topic><topic>In-Line sensor</topic><topic>Material extrusion</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>On-Line</topic><topic>Plateau modulus</topic><topic>Pressure transducer</topic><topic>Relaxation time</topic><topic>Rheology</topic><topic>Rheometer</topic><topic>Science &amp; Technology</topic><topic>Strength</topic><topic>Technology</topic><topic>Thermocouple</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coogan, Timothy J</creatorcontrib><creatorcontrib>Kazmer, David O</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Additive manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coogan, Timothy J</au><au>Kazmer, David O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of interlayer strength in material extrusion additive manufacturing</atitle><jtitle>Additive manufacturing</jtitle><stitle>ADDIT MANUF</stitle><date>2020-10</date><risdate>2020</risdate><volume>35</volume><spage>101368</spage><pages>101368-</pages><artnum>101368</artnum><issn>2214-8604</issn><eissn>2214-7810</eissn><abstract>[Display omitted] •In-line rheometer and melt pressure transducers were used to understand the Material Extrusion process.•Melt pressure and contact pressures correlate with interlayer contact.•Relaxation times and transient heat analysis enable prediction of interlayer diffusion.•In-line sensors plus contact and diffusion equations provide real-time calculation and monitoring of interlayer strength. The interlayer strengths of parts produced through material extrusion (also referred to as fused filament fabrication or FFF) suffer due to poor interlayer contact and insufficient diffusion. A model for predicting interlayer contact, based on pressure-driven flow, is combined with a model for polymer chain diffusion to predict the interlayer strength (aka, bond strength) of material extrusion parts. Interlayer contact is predicted based on in-line pressure measurements while diffusion is predicted based on in-line temperature and viscosity measurements, demonstrating that a combination of the appropriate in-line sensors and models can be used for real-time monitoring and process control. The interlayer strength model is successfully validated against strength measurements of parts made with high impact polystyrene, indicating that the strength of all parts suffers due to incomplete interlayer contact while only some parts suffered from incomplete diffusive healing. The melt pressure and in-line rheological measurements have proven extremely valuable for understanding the material extrusion process, optimizing quality, and monitoring consistency. Practical insights from the model are provided about how to select appropriate materials and processing conditions, and it concludes with a demonstration of using the in-line sensors and real-time modeling for defect detection.</abstract><cop>AMSTERDAM</cop><pub>Elsevier B.V</pub><doi>10.1016/j.addma.2020.101368</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1166-4043</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2214-8604
ispartof Additive manufacturing, 2020-10, Vol.35, p.101368, Article 101368
issn 2214-8604
2214-7810
language eng
recordid cdi_webofscience_primary_000576651200007
source Alma/SFX Local Collection
subjects 3D printing
Additive manufacturing
Engineering
Engineering, Manufacturing
FDM
FFF
Fused deposition modeling
Fused filament fabrication
In-Line
In-Line rheometer
In-Line sensor
Material extrusion
Materials Science
Materials Science, Multidisciplinary
On-Line
Plateau modulus
Pressure transducer
Relaxation time
Rheology
Rheometer
Science & Technology
Strength
Technology
Thermocouple
Viscosity
title Prediction of interlayer strength in material extrusion additive manufacturing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T05%3A25%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20interlayer%20strength%20in%20material%20extrusion%20additive%20manufacturing&rft.jtitle=Additive%20manufacturing&rft.au=Coogan,%20Timothy%20J&rft.date=2020-10&rft.volume=35&rft.spage=101368&rft.pages=101368-&rft.artnum=101368&rft.issn=2214-8604&rft.eissn=2214-7810&rft_id=info:doi/10.1016/j.addma.2020.101368&rft_dat=%3Celsevier_webof%3ES2214860420307405%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S2214860420307405&rfr_iscdi=true