Deep learning for the design of photonic structures

Innovative approaches and tools play an important role in shaping design, characterization and optimization for the field of photonics. As a subset of machine learning that learns multilevel abstraction of data using hierarchically structured layers, deep learning offers an efficient means to design...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2021-02, Vol.15 (2), p.77-90
Hauptverfasser: Ma, Wei, Liu, Zhaocheng, Kudyshev, Zhaxylyk A., Boltasseva, Alexandra, Cai, Wenshan, Liu, Yongmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 90
container_issue 2
container_start_page 77
container_title Nature photonics
container_volume 15
creator Ma, Wei
Liu, Zhaocheng
Kudyshev, Zhaxylyk A.
Boltasseva, Alexandra
Cai, Wenshan
Liu, Yongmin
description Innovative approaches and tools play an important role in shaping design, characterization and optimization for the field of photonics. As a subset of machine learning that learns multilevel abstraction of data using hierarchically structured layers, deep learning offers an efficient means to design photonic structures, spawning data-driven approaches complementary to conventional physics- and rule-based methods. Here, we review recent progress in deep-learning-based photonic design by providing the historical background, algorithm fundamentals and key applications, with the emphasis on various model architectures for specific photonic tasks. We also comment on the challenges and perspectives of this emerging research direction. The application of deep learning to the design of photonic structures and devices is reviewed, including algorithm fundamentals.
doi_str_mv 10.1038/s41566-020-0685-y
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000575340100001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2483414633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-65632e4c35f355bf7f9e224755d86acef64e795204cb9ae21ba8cc21f7572a633</originalsourceid><addsrcrecordid>eNqNkE1LwzAYgIMoOKc_wFvBo1Tz3fQo9RMGXvQc2uzN1jGTmqTI_r0ZlXkSPOU9PE-S90HokuAbgpm6jZwIKUtMcYmlEuXuCM1IxeuSq5odH2YlTtFZjBuMBaspnSF2DzAUW2iD692qsD4UaQ3FEmK_coW3xbD2ybveFDGF0aQxQDxHJ7bdRrj4Oefo_fHhrXkuF69PL83dojRM0VRKIRkFbpiwTIjOVrYGSnklxFLJ1oCVHKpaUMxNV7dASdcqYyixlahoKxmbo6vp3iH4zxFi0hs_Bpef1JQrxgnPUKbIRJngYwxg9RD6jzbsNMF630ZPbXRuo_dt9C4715PzBZ230fTgDBw8nOtUgnFM8oRJptX_6aZPbeq9a_zoUlbppMaMuxWE3xX-_t03iReG6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483414633</pqid></control><display><type>article</type><title>Deep learning for the design of photonic structures</title><source>Nature</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Ma, Wei ; Liu, Zhaocheng ; Kudyshev, Zhaxylyk A. ; Boltasseva, Alexandra ; Cai, Wenshan ; Liu, Yongmin</creator><creatorcontrib>Ma, Wei ; Liu, Zhaocheng ; Kudyshev, Zhaxylyk A. ; Boltasseva, Alexandra ; Cai, Wenshan ; Liu, Yongmin</creatorcontrib><description>Innovative approaches and tools play an important role in shaping design, characterization and optimization for the field of photonics. As a subset of machine learning that learns multilevel abstraction of data using hierarchically structured layers, deep learning offers an efficient means to design photonic structures, spawning data-driven approaches complementary to conventional physics- and rule-based methods. Here, we review recent progress in deep-learning-based photonic design by providing the historical background, algorithm fundamentals and key applications, with the emphasis on various model architectures for specific photonic tasks. We also comment on the challenges and perspectives of this emerging research direction. The application of deep learning to the design of photonic structures and devices is reviewed, including algorithm fundamentals.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-020-0685-y</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/399/1015 ; 639/624/399/1022 ; 639/624/399/1099 ; 639/766/1130/2799 ; 639/925/927/1021 ; Algorithms ; Applied and Technical Physics ; Deep learning ; Design ; Design optimization ; Learning algorithms ; Machine learning ; Optics ; Photonics ; Physical Sciences ; Physics ; Physics and Astronomy ; Physics, Applied ; Quantum Physics ; Review Article ; Science &amp; Technology ; Spawning</subject><ispartof>Nature photonics, 2021-02, Vol.15 (2), p.77-90</ispartof><rights>Springer Nature Limited 2020</rights><rights>Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>589</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000575340100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c382t-65632e4c35f355bf7f9e224755d86acef64e795204cb9ae21ba8cc21f7572a633</citedby><cites>FETCH-LOGICAL-c382t-65632e4c35f355bf7f9e224755d86acef64e795204cb9ae21ba8cc21f7572a633</cites><orcidid>0000-0002-5665-7840 ; 0000-0001-6623-9231 ; 0000-0002-6367-3857 ; 0000-0001-8905-2605 ; 0000-0003-1084-6651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932,39265</link.rule.ids></links><search><creatorcontrib>Ma, Wei</creatorcontrib><creatorcontrib>Liu, Zhaocheng</creatorcontrib><creatorcontrib>Kudyshev, Zhaxylyk A.</creatorcontrib><creatorcontrib>Boltasseva, Alexandra</creatorcontrib><creatorcontrib>Cai, Wenshan</creatorcontrib><creatorcontrib>Liu, Yongmin</creatorcontrib><title>Deep learning for the design of photonic structures</title><title>Nature photonics</title><addtitle>Nat. Photonics</addtitle><addtitle>NAT PHOTONICS</addtitle><description>Innovative approaches and tools play an important role in shaping design, characterization and optimization for the field of photonics. As a subset of machine learning that learns multilevel abstraction of data using hierarchically structured layers, deep learning offers an efficient means to design photonic structures, spawning data-driven approaches complementary to conventional physics- and rule-based methods. Here, we review recent progress in deep-learning-based photonic design by providing the historical background, algorithm fundamentals and key applications, with the emphasis on various model architectures for specific photonic tasks. We also comment on the challenges and perspectives of this emerging research direction. The application of deep learning to the design of photonic structures and devices is reviewed, including algorithm fundamentals.</description><subject>639/624/399/1015</subject><subject>639/624/399/1022</subject><subject>639/624/399/1099</subject><subject>639/766/1130/2799</subject><subject>639/925/927/1021</subject><subject>Algorithms</subject><subject>Applied and Technical Physics</subject><subject>Deep learning</subject><subject>Design</subject><subject>Design optimization</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics, Applied</subject><subject>Quantum Physics</subject><subject>Review Article</subject><subject>Science &amp; Technology</subject><subject>Spawning</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkE1LwzAYgIMoOKc_wFvBo1Tz3fQo9RMGXvQc2uzN1jGTmqTI_r0ZlXkSPOU9PE-S90HokuAbgpm6jZwIKUtMcYmlEuXuCM1IxeuSq5odH2YlTtFZjBuMBaspnSF2DzAUW2iD692qsD4UaQ3FEmK_coW3xbD2ybveFDGF0aQxQDxHJ7bdRrj4Oefo_fHhrXkuF69PL83dojRM0VRKIRkFbpiwTIjOVrYGSnklxFLJ1oCVHKpaUMxNV7dASdcqYyixlahoKxmbo6vp3iH4zxFi0hs_Bpef1JQrxgnPUKbIRJngYwxg9RD6jzbsNMF630ZPbXRuo_dt9C4715PzBZ230fTgDBw8nOtUgnFM8oRJptX_6aZPbeq9a_zoUlbppMaMuxWE3xX-_t03iReG6Q</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Ma, Wei</creator><creator>Liu, Zhaocheng</creator><creator>Kudyshev, Zhaxylyk A.</creator><creator>Boltasseva, Alexandra</creator><creator>Cai, Wenshan</creator><creator>Liu, Yongmin</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-5665-7840</orcidid><orcidid>https://orcid.org/0000-0001-6623-9231</orcidid><orcidid>https://orcid.org/0000-0002-6367-3857</orcidid><orcidid>https://orcid.org/0000-0001-8905-2605</orcidid><orcidid>https://orcid.org/0000-0003-1084-6651</orcidid></search><sort><creationdate>20210201</creationdate><title>Deep learning for the design of photonic structures</title><author>Ma, Wei ; Liu, Zhaocheng ; Kudyshev, Zhaxylyk A. ; Boltasseva, Alexandra ; Cai, Wenshan ; Liu, Yongmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-65632e4c35f355bf7f9e224755d86acef64e795204cb9ae21ba8cc21f7572a633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/624/399/1015</topic><topic>639/624/399/1022</topic><topic>639/624/399/1099</topic><topic>639/766/1130/2799</topic><topic>639/925/927/1021</topic><topic>Algorithms</topic><topic>Applied and Technical Physics</topic><topic>Deep learning</topic><topic>Design</topic><topic>Design optimization</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics, Applied</topic><topic>Quantum Physics</topic><topic>Review Article</topic><topic>Science &amp; Technology</topic><topic>Spawning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Wei</creatorcontrib><creatorcontrib>Liu, Zhaocheng</creatorcontrib><creatorcontrib>Kudyshev, Zhaxylyk A.</creatorcontrib><creatorcontrib>Boltasseva, Alexandra</creatorcontrib><creatorcontrib>Cai, Wenshan</creatorcontrib><creatorcontrib>Liu, Yongmin</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Wei</au><au>Liu, Zhaocheng</au><au>Kudyshev, Zhaxylyk A.</au><au>Boltasseva, Alexandra</au><au>Cai, Wenshan</au><au>Liu, Yongmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning for the design of photonic structures</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photonics</stitle><stitle>NAT PHOTONICS</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>15</volume><issue>2</issue><spage>77</spage><epage>90</epage><pages>77-90</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Innovative approaches and tools play an important role in shaping design, characterization and optimization for the field of photonics. As a subset of machine learning that learns multilevel abstraction of data using hierarchically structured layers, deep learning offers an efficient means to design photonic structures, spawning data-driven approaches complementary to conventional physics- and rule-based methods. Here, we review recent progress in deep-learning-based photonic design by providing the historical background, algorithm fundamentals and key applications, with the emphasis on various model architectures for specific photonic tasks. We also comment on the challenges and perspectives of this emerging research direction. The application of deep learning to the design of photonic structures and devices is reviewed, including algorithm fundamentals.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-020-0685-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5665-7840</orcidid><orcidid>https://orcid.org/0000-0001-6623-9231</orcidid><orcidid>https://orcid.org/0000-0002-6367-3857</orcidid><orcidid>https://orcid.org/0000-0001-8905-2605</orcidid><orcidid>https://orcid.org/0000-0003-1084-6651</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2021-02, Vol.15 (2), p.77-90
issn 1749-4885
1749-4893
language eng
recordid cdi_webofscience_primary_000575340100001
source Nature; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects 639/624/399/1015
639/624/399/1022
639/624/399/1099
639/766/1130/2799
639/925/927/1021
Algorithms
Applied and Technical Physics
Deep learning
Design
Design optimization
Learning algorithms
Machine learning
Optics
Photonics
Physical Sciences
Physics
Physics and Astronomy
Physics, Applied
Quantum Physics
Review Article
Science & Technology
Spawning
title Deep learning for the design of photonic structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T03%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20for%20the%20design%20of%20photonic%20structures&rft.jtitle=Nature%20photonics&rft.au=Ma,%20Wei&rft.date=2021-02-01&rft.volume=15&rft.issue=2&rft.spage=77&rft.epage=90&rft.pages=77-90&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-020-0685-y&rft_dat=%3Cproquest_webof%3E2483414633%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2483414633&rft_id=info:pmid/&rfr_iscdi=true