Deep learning for the design of photonic structures
Innovative approaches and tools play an important role in shaping design, characterization and optimization for the field of photonics. As a subset of machine learning that learns multilevel abstraction of data using hierarchically structured layers, deep learning offers an efficient means to design...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2021-02, Vol.15 (2), p.77-90 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 90 |
---|---|
container_issue | 2 |
container_start_page | 77 |
container_title | Nature photonics |
container_volume | 15 |
creator | Ma, Wei Liu, Zhaocheng Kudyshev, Zhaxylyk A. Boltasseva, Alexandra Cai, Wenshan Liu, Yongmin |
description | Innovative approaches and tools play an important role in shaping design, characterization and optimization for the field of photonics. As a subset of machine learning that learns multilevel abstraction of data using hierarchically structured layers, deep learning offers an efficient means to design photonic structures, spawning data-driven approaches complementary to conventional physics- and rule-based methods. Here, we review recent progress in deep-learning-based photonic design by providing the historical background, algorithm fundamentals and key applications, with the emphasis on various model architectures for specific photonic tasks. We also comment on the challenges and perspectives of this emerging research direction.
The application of deep learning to the design of photonic structures and devices is reviewed, including algorithm fundamentals. |
doi_str_mv | 10.1038/s41566-020-0685-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000575340100001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2483414633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-65632e4c35f355bf7f9e224755d86acef64e795204cb9ae21ba8cc21f7572a633</originalsourceid><addsrcrecordid>eNqNkE1LwzAYgIMoOKc_wFvBo1Tz3fQo9RMGXvQc2uzN1jGTmqTI_r0ZlXkSPOU9PE-S90HokuAbgpm6jZwIKUtMcYmlEuXuCM1IxeuSq5odH2YlTtFZjBuMBaspnSF2DzAUW2iD692qsD4UaQ3FEmK_coW3xbD2ybveFDGF0aQxQDxHJ7bdRrj4Oefo_fHhrXkuF69PL83dojRM0VRKIRkFbpiwTIjOVrYGSnklxFLJ1oCVHKpaUMxNV7dASdcqYyixlahoKxmbo6vp3iH4zxFi0hs_Bpef1JQrxgnPUKbIRJngYwxg9RD6jzbsNMF630ZPbXRuo_dt9C4715PzBZ230fTgDBw8nOtUgnFM8oRJptX_6aZPbeq9a_zoUlbppMaMuxWE3xX-_t03iReG6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483414633</pqid></control><display><type>article</type><title>Deep learning for the design of photonic structures</title><source>Nature</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Alma/SFX Local Collection</source><creator>Ma, Wei ; Liu, Zhaocheng ; Kudyshev, Zhaxylyk A. ; Boltasseva, Alexandra ; Cai, Wenshan ; Liu, Yongmin</creator><creatorcontrib>Ma, Wei ; Liu, Zhaocheng ; Kudyshev, Zhaxylyk A. ; Boltasseva, Alexandra ; Cai, Wenshan ; Liu, Yongmin</creatorcontrib><description>Innovative approaches and tools play an important role in shaping design, characterization and optimization for the field of photonics. As a subset of machine learning that learns multilevel abstraction of data using hierarchically structured layers, deep learning offers an efficient means to design photonic structures, spawning data-driven approaches complementary to conventional physics- and rule-based methods. Here, we review recent progress in deep-learning-based photonic design by providing the historical background, algorithm fundamentals and key applications, with the emphasis on various model architectures for specific photonic tasks. We also comment on the challenges and perspectives of this emerging research direction.
The application of deep learning to the design of photonic structures and devices is reviewed, including algorithm fundamentals.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-020-0685-y</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/399/1015 ; 639/624/399/1022 ; 639/624/399/1099 ; 639/766/1130/2799 ; 639/925/927/1021 ; Algorithms ; Applied and Technical Physics ; Deep learning ; Design ; Design optimization ; Learning algorithms ; Machine learning ; Optics ; Photonics ; Physical Sciences ; Physics ; Physics and Astronomy ; Physics, Applied ; Quantum Physics ; Review Article ; Science & Technology ; Spawning</subject><ispartof>Nature photonics, 2021-02, Vol.15 (2), p.77-90</ispartof><rights>Springer Nature Limited 2020</rights><rights>Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>589</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000575340100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c382t-65632e4c35f355bf7f9e224755d86acef64e795204cb9ae21ba8cc21f7572a633</citedby><cites>FETCH-LOGICAL-c382t-65632e4c35f355bf7f9e224755d86acef64e795204cb9ae21ba8cc21f7572a633</cites><orcidid>0000-0002-5665-7840 ; 0000-0001-6623-9231 ; 0000-0002-6367-3857 ; 0000-0001-8905-2605 ; 0000-0003-1084-6651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932,39265</link.rule.ids></links><search><creatorcontrib>Ma, Wei</creatorcontrib><creatorcontrib>Liu, Zhaocheng</creatorcontrib><creatorcontrib>Kudyshev, Zhaxylyk A.</creatorcontrib><creatorcontrib>Boltasseva, Alexandra</creatorcontrib><creatorcontrib>Cai, Wenshan</creatorcontrib><creatorcontrib>Liu, Yongmin</creatorcontrib><title>Deep learning for the design of photonic structures</title><title>Nature photonics</title><addtitle>Nat. Photonics</addtitle><addtitle>NAT PHOTONICS</addtitle><description>Innovative approaches and tools play an important role in shaping design, characterization and optimization for the field of photonics. As a subset of machine learning that learns multilevel abstraction of data using hierarchically structured layers, deep learning offers an efficient means to design photonic structures, spawning data-driven approaches complementary to conventional physics- and rule-based methods. Here, we review recent progress in deep-learning-based photonic design by providing the historical background, algorithm fundamentals and key applications, with the emphasis on various model architectures for specific photonic tasks. We also comment on the challenges and perspectives of this emerging research direction.
The application of deep learning to the design of photonic structures and devices is reviewed, including algorithm fundamentals.</description><subject>639/624/399/1015</subject><subject>639/624/399/1022</subject><subject>639/624/399/1099</subject><subject>639/766/1130/2799</subject><subject>639/925/927/1021</subject><subject>Algorithms</subject><subject>Applied and Technical Physics</subject><subject>Deep learning</subject><subject>Design</subject><subject>Design optimization</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics, Applied</subject><subject>Quantum Physics</subject><subject>Review Article</subject><subject>Science & Technology</subject><subject>Spawning</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkE1LwzAYgIMoOKc_wFvBo1Tz3fQo9RMGXvQc2uzN1jGTmqTI_r0ZlXkSPOU9PE-S90HokuAbgpm6jZwIKUtMcYmlEuXuCM1IxeuSq5odH2YlTtFZjBuMBaspnSF2DzAUW2iD692qsD4UaQ3FEmK_coW3xbD2ybveFDGF0aQxQDxHJ7bdRrj4Oefo_fHhrXkuF69PL83dojRM0VRKIRkFbpiwTIjOVrYGSnklxFLJ1oCVHKpaUMxNV7dASdcqYyixlahoKxmbo6vp3iH4zxFi0hs_Bpef1JQrxgnPUKbIRJngYwxg9RD6jzbsNMF630ZPbXRuo_dt9C4715PzBZ230fTgDBw8nOtUgnFM8oRJptX_6aZPbeq9a_zoUlbppMaMuxWE3xX-_t03iReG6Q</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Ma, Wei</creator><creator>Liu, Zhaocheng</creator><creator>Kudyshev, Zhaxylyk A.</creator><creator>Boltasseva, Alexandra</creator><creator>Cai, Wenshan</creator><creator>Liu, Yongmin</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-5665-7840</orcidid><orcidid>https://orcid.org/0000-0001-6623-9231</orcidid><orcidid>https://orcid.org/0000-0002-6367-3857</orcidid><orcidid>https://orcid.org/0000-0001-8905-2605</orcidid><orcidid>https://orcid.org/0000-0003-1084-6651</orcidid></search><sort><creationdate>20210201</creationdate><title>Deep learning for the design of photonic structures</title><author>Ma, Wei ; Liu, Zhaocheng ; Kudyshev, Zhaxylyk A. ; Boltasseva, Alexandra ; Cai, Wenshan ; Liu, Yongmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-65632e4c35f355bf7f9e224755d86acef64e795204cb9ae21ba8cc21f7572a633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/624/399/1015</topic><topic>639/624/399/1022</topic><topic>639/624/399/1099</topic><topic>639/766/1130/2799</topic><topic>639/925/927/1021</topic><topic>Algorithms</topic><topic>Applied and Technical Physics</topic><topic>Deep learning</topic><topic>Design</topic><topic>Design optimization</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics, Applied</topic><topic>Quantum Physics</topic><topic>Review Article</topic><topic>Science & Technology</topic><topic>Spawning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Wei</creatorcontrib><creatorcontrib>Liu, Zhaocheng</creatorcontrib><creatorcontrib>Kudyshev, Zhaxylyk A.</creatorcontrib><creatorcontrib>Boltasseva, Alexandra</creatorcontrib><creatorcontrib>Cai, Wenshan</creatorcontrib><creatorcontrib>Liu, Yongmin</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Wei</au><au>Liu, Zhaocheng</au><au>Kudyshev, Zhaxylyk A.</au><au>Boltasseva, Alexandra</au><au>Cai, Wenshan</au><au>Liu, Yongmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning for the design of photonic structures</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photonics</stitle><stitle>NAT PHOTONICS</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>15</volume><issue>2</issue><spage>77</spage><epage>90</epage><pages>77-90</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Innovative approaches and tools play an important role in shaping design, characterization and optimization for the field of photonics. As a subset of machine learning that learns multilevel abstraction of data using hierarchically structured layers, deep learning offers an efficient means to design photonic structures, spawning data-driven approaches complementary to conventional physics- and rule-based methods. Here, we review recent progress in deep-learning-based photonic design by providing the historical background, algorithm fundamentals and key applications, with the emphasis on various model architectures for specific photonic tasks. We also comment on the challenges and perspectives of this emerging research direction.
The application of deep learning to the design of photonic structures and devices is reviewed, including algorithm fundamentals.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-020-0685-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5665-7840</orcidid><orcidid>https://orcid.org/0000-0001-6623-9231</orcidid><orcidid>https://orcid.org/0000-0002-6367-3857</orcidid><orcidid>https://orcid.org/0000-0001-8905-2605</orcidid><orcidid>https://orcid.org/0000-0003-1084-6651</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2021-02, Vol.15 (2), p.77-90 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_webofscience_primary_000575340100001 |
source | Nature; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection |
subjects | 639/624/399/1015 639/624/399/1022 639/624/399/1099 639/766/1130/2799 639/925/927/1021 Algorithms Applied and Technical Physics Deep learning Design Design optimization Learning algorithms Machine learning Optics Photonics Physical Sciences Physics Physics and Astronomy Physics, Applied Quantum Physics Review Article Science & Technology Spawning |
title | Deep learning for the design of photonic structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T03%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20for%20the%20design%20of%20photonic%20structures&rft.jtitle=Nature%20photonics&rft.au=Ma,%20Wei&rft.date=2021-02-01&rft.volume=15&rft.issue=2&rft.spage=77&rft.epage=90&rft.pages=77-90&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-020-0685-y&rft_dat=%3Cproquest_webof%3E2483414633%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2483414633&rft_id=info:pmid/&rfr_iscdi=true |