Structural Phase Transitions of a Molecular Metal Oxide

The structural phase of a metal oxide changes with temperature and pressure. During phase transitions, component ions move in multidimensional metal–oxygen networks. Such macroscopic structural events are robust to changes in particle size, even at scales of around 10 nm, and size effects limiting t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2020-12, Vol.59 (50), p.22446-22450
Hauptverfasser: Fujibayashi, Masaru, Watari, Yu, Tsunashima, Ryo, Nishihara, Sadafumi, Noro, Shin‐ichiro, Lin, Chang‐Gen, Song, Yu‐Fei, Takahashi, Kiyonori, Nakamura, Takayoshi, Akutagawa, Tomoyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22450
container_issue 50
container_start_page 22446
container_title Angewandte Chemie International Edition
container_volume 59
creator Fujibayashi, Masaru
Watari, Yu
Tsunashima, Ryo
Nishihara, Sadafumi
Noro, Shin‐ichiro
Lin, Chang‐Gen
Song, Yu‐Fei
Takahashi, Kiyonori
Nakamura, Takayoshi
Akutagawa, Tomoyuki
description The structural phase of a metal oxide changes with temperature and pressure. During phase transitions, component ions move in multidimensional metal–oxygen networks. Such macroscopic structural events are robust to changes in particle size, even at scales of around 10 nm, and size effects limiting these transitions are particularly important in, for example, high‐density memory applications of ferroelectrics. In this study, we examined structural transitions of the molecular metal oxide [Na@(SO3)2(n‐BuPO3)4MoV4MoVI14O49]5− (Molecule 1) at approximately 2 nm by using single‐crystal X‐ray diffraction analysis. The Na+ encapsulated in the discrete metal‐oxide anion exhibited a reversible order–disorder transition with distortion of the Mo–O molecular framework induced by temperature. Similar order–disorder transitions were also triggered by chemical pressure induced by removing crystalline solvent molecules in the single‐crystal state or by substituting the countercation to change the molecular packing. Structural transitions of the molecular metal oxide [Na@(SO3)2(n‐BuPO3)4MoV4MoVI14O49]5− were examined by single‐crystal X‐ray diffraction analysis. The Na+ encapsulated in the discrete metal‐oxide anion exhibited a reversible order–disorder transition with distortion of the Mo–O molecular framework induced by temperature (see picture).
doi_str_mv 10.1002/anie.202010748
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000573846100001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438684268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4538-55517ee6dafca1b85952faa0b9915804279f1dcfe1b45a678532aa71e564c0663</originalsourceid><addsrcrecordid>eNqNkM9LHEEQhRuJqFGvngdyCcis1b97jrJoIuxGQT0Ptb01pGV2etM9Q-J_n15WDOSSnKoO3_d4PMYuOMw4gLjCIdBMgAAOVrkDdsK14LW0Vn4ov5Kytk7zY_Yx55fCOwfmiB1L4bSR1p0w-zimyY9Twr56-I6ZqqeEQw5jiEOuYldhtYw9-anHVC1pLNj9r7CmM3bYYZ_p_O2esufbm6f513px_-Vufr2ovdLS1VprbonMGjuPfOV0o0WHCKum4dqBErbp-Np3xFdKoyldpUC0nLRRHoyRp-zzPneb4o-J8thuQvbU9zhQnHIrlHTGKWFcQT_9hb7EKQ2lXaGMtiC0lYWa7SmfYs6JunabwgbTa8uh3U3a7iZt3yctwuVe-Emr2GUfaPD0LgFASXXKFBWAF9r9Pz0PI-6GnsdpGIvavKmhp9d_1Gqvv93d_Cn5GzcDlxI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465702573</pqid></control><display><type>article</type><title>Structural Phase Transitions of a Molecular Metal Oxide</title><source>Access via Wiley Online Library</source><creator>Fujibayashi, Masaru ; Watari, Yu ; Tsunashima, Ryo ; Nishihara, Sadafumi ; Noro, Shin‐ichiro ; Lin, Chang‐Gen ; Song, Yu‐Fei ; Takahashi, Kiyonori ; Nakamura, Takayoshi ; Akutagawa, Tomoyuki</creator><creatorcontrib>Fujibayashi, Masaru ; Watari, Yu ; Tsunashima, Ryo ; Nishihara, Sadafumi ; Noro, Shin‐ichiro ; Lin, Chang‐Gen ; Song, Yu‐Fei ; Takahashi, Kiyonori ; Nakamura, Takayoshi ; Akutagawa, Tomoyuki</creatorcontrib><description>The structural phase of a metal oxide changes with temperature and pressure. During phase transitions, component ions move in multidimensional metal–oxygen networks. Such macroscopic structural events are robust to changes in particle size, even at scales of around 10 nm, and size effects limiting these transitions are particularly important in, for example, high‐density memory applications of ferroelectrics. In this study, we examined structural transitions of the molecular metal oxide [Na@(SO3)2(n‐BuPO3)4MoV4MoVI14O49]5− (Molecule 1) at approximately 2 nm by using single‐crystal X‐ray diffraction analysis. The Na+ encapsulated in the discrete metal‐oxide anion exhibited a reversible order–disorder transition with distortion of the Mo–O molecular framework induced by temperature. Similar order–disorder transitions were also triggered by chemical pressure induced by removing crystalline solvent molecules in the single‐crystal state or by substituting the countercation to change the molecular packing. Structural transitions of the molecular metal oxide [Na@(SO3)2(n‐BuPO3)4MoV4MoVI14O49]5− were examined by single‐crystal X‐ray diffraction analysis. The Na+ encapsulated in the discrete metal‐oxide anion exhibited a reversible order–disorder transition with distortion of the Mo–O molecular framework induced by temperature (see picture).</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202010748</identifier><identifier>PMID: 32856378</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>cage compounds ; Chemistry ; Chemistry, Multidisciplinary ; crystal engineering ; Ferroelectric materials ; Ferroelectricity ; Metal oxides ; Metals ; molybdenum ; Phase transitions ; Physical Sciences ; polyoxometalates ; Science &amp; Technology ; Size effects ; Sulfur trioxide ; Temperature</subject><ispartof>Angewandte Chemie International Edition, 2020-12, Vol.59 (50), p.22446-22450</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000573846100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4538-55517ee6dafca1b85952faa0b9915804279f1dcfe1b45a678532aa71e564c0663</citedby><cites>FETCH-LOGICAL-c4538-55517ee6dafca1b85952faa0b9915804279f1dcfe1b45a678532aa71e564c0663</cites><orcidid>0000-0002-8852-6992 ; 0000-0003-4757-4741 ; 0000-0003-4030-786X ; 0000-0001-9862-3596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202010748$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202010748$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids></links><search><creatorcontrib>Fujibayashi, Masaru</creatorcontrib><creatorcontrib>Watari, Yu</creatorcontrib><creatorcontrib>Tsunashima, Ryo</creatorcontrib><creatorcontrib>Nishihara, Sadafumi</creatorcontrib><creatorcontrib>Noro, Shin‐ichiro</creatorcontrib><creatorcontrib>Lin, Chang‐Gen</creatorcontrib><creatorcontrib>Song, Yu‐Fei</creatorcontrib><creatorcontrib>Takahashi, Kiyonori</creatorcontrib><creatorcontrib>Nakamura, Takayoshi</creatorcontrib><creatorcontrib>Akutagawa, Tomoyuki</creatorcontrib><title>Structural Phase Transitions of a Molecular Metal Oxide</title><title>Angewandte Chemie International Edition</title><addtitle>ANGEW CHEM INT EDIT</addtitle><description>The structural phase of a metal oxide changes with temperature and pressure. During phase transitions, component ions move in multidimensional metal–oxygen networks. Such macroscopic structural events are robust to changes in particle size, even at scales of around 10 nm, and size effects limiting these transitions are particularly important in, for example, high‐density memory applications of ferroelectrics. In this study, we examined structural transitions of the molecular metal oxide [Na@(SO3)2(n‐BuPO3)4MoV4MoVI14O49]5− (Molecule 1) at approximately 2 nm by using single‐crystal X‐ray diffraction analysis. The Na+ encapsulated in the discrete metal‐oxide anion exhibited a reversible order–disorder transition with distortion of the Mo–O molecular framework induced by temperature. Similar order–disorder transitions were also triggered by chemical pressure induced by removing crystalline solvent molecules in the single‐crystal state or by substituting the countercation to change the molecular packing. Structural transitions of the molecular metal oxide [Na@(SO3)2(n‐BuPO3)4MoV4MoVI14O49]5− were examined by single‐crystal X‐ray diffraction analysis. The Na+ encapsulated in the discrete metal‐oxide anion exhibited a reversible order–disorder transition with distortion of the Mo–O molecular framework induced by temperature (see picture).</description><subject>cage compounds</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>crystal engineering</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Metal oxides</subject><subject>Metals</subject><subject>molybdenum</subject><subject>Phase transitions</subject><subject>Physical Sciences</subject><subject>polyoxometalates</subject><subject>Science &amp; Technology</subject><subject>Size effects</subject><subject>Sulfur trioxide</subject><subject>Temperature</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkM9LHEEQhRuJqFGvngdyCcis1b97jrJoIuxGQT0Ptb01pGV2etM9Q-J_n15WDOSSnKoO3_d4PMYuOMw4gLjCIdBMgAAOVrkDdsK14LW0Vn4ov5Kytk7zY_Yx55fCOwfmiB1L4bSR1p0w-zimyY9Twr56-I6ZqqeEQw5jiEOuYldhtYw9-anHVC1pLNj9r7CmM3bYYZ_p_O2esufbm6f513px_-Vufr2ovdLS1VprbonMGjuPfOV0o0WHCKum4dqBErbp-Np3xFdKoyldpUC0nLRRHoyRp-zzPneb4o-J8thuQvbU9zhQnHIrlHTGKWFcQT_9hb7EKQ2lXaGMtiC0lYWa7SmfYs6JunabwgbTa8uh3U3a7iZt3yctwuVe-Emr2GUfaPD0LgFASXXKFBWAF9r9Pz0PI-6GnsdpGIvavKmhp9d_1Gqvv93d_Cn5GzcDlxI</recordid><startdate>20201207</startdate><enddate>20201207</enddate><creator>Fujibayashi, Masaru</creator><creator>Watari, Yu</creator><creator>Tsunashima, Ryo</creator><creator>Nishihara, Sadafumi</creator><creator>Noro, Shin‐ichiro</creator><creator>Lin, Chang‐Gen</creator><creator>Song, Yu‐Fei</creator><creator>Takahashi, Kiyonori</creator><creator>Nakamura, Takayoshi</creator><creator>Akutagawa, Tomoyuki</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8852-6992</orcidid><orcidid>https://orcid.org/0000-0003-4757-4741</orcidid><orcidid>https://orcid.org/0000-0003-4030-786X</orcidid><orcidid>https://orcid.org/0000-0001-9862-3596</orcidid></search><sort><creationdate>20201207</creationdate><title>Structural Phase Transitions of a Molecular Metal Oxide</title><author>Fujibayashi, Masaru ; Watari, Yu ; Tsunashima, Ryo ; Nishihara, Sadafumi ; Noro, Shin‐ichiro ; Lin, Chang‐Gen ; Song, Yu‐Fei ; Takahashi, Kiyonori ; Nakamura, Takayoshi ; Akutagawa, Tomoyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4538-55517ee6dafca1b85952faa0b9915804279f1dcfe1b45a678532aa71e564c0663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>cage compounds</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>crystal engineering</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Metal oxides</topic><topic>Metals</topic><topic>molybdenum</topic><topic>Phase transitions</topic><topic>Physical Sciences</topic><topic>polyoxometalates</topic><topic>Science &amp; Technology</topic><topic>Size effects</topic><topic>Sulfur trioxide</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujibayashi, Masaru</creatorcontrib><creatorcontrib>Watari, Yu</creatorcontrib><creatorcontrib>Tsunashima, Ryo</creatorcontrib><creatorcontrib>Nishihara, Sadafumi</creatorcontrib><creatorcontrib>Noro, Shin‐ichiro</creatorcontrib><creatorcontrib>Lin, Chang‐Gen</creatorcontrib><creatorcontrib>Song, Yu‐Fei</creatorcontrib><creatorcontrib>Takahashi, Kiyonori</creatorcontrib><creatorcontrib>Nakamura, Takayoshi</creatorcontrib><creatorcontrib>Akutagawa, Tomoyuki</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujibayashi, Masaru</au><au>Watari, Yu</au><au>Tsunashima, Ryo</au><au>Nishihara, Sadafumi</au><au>Noro, Shin‐ichiro</au><au>Lin, Chang‐Gen</au><au>Song, Yu‐Fei</au><au>Takahashi, Kiyonori</au><au>Nakamura, Takayoshi</au><au>Akutagawa, Tomoyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Phase Transitions of a Molecular Metal Oxide</atitle><jtitle>Angewandte Chemie International Edition</jtitle><stitle>ANGEW CHEM INT EDIT</stitle><date>2020-12-07</date><risdate>2020</risdate><volume>59</volume><issue>50</issue><spage>22446</spage><epage>22450</epage><pages>22446-22450</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The structural phase of a metal oxide changes with temperature and pressure. During phase transitions, component ions move in multidimensional metal–oxygen networks. Such macroscopic structural events are robust to changes in particle size, even at scales of around 10 nm, and size effects limiting these transitions are particularly important in, for example, high‐density memory applications of ferroelectrics. In this study, we examined structural transitions of the molecular metal oxide [Na@(SO3)2(n‐BuPO3)4MoV4MoVI14O49]5− (Molecule 1) at approximately 2 nm by using single‐crystal X‐ray diffraction analysis. The Na+ encapsulated in the discrete metal‐oxide anion exhibited a reversible order–disorder transition with distortion of the Mo–O molecular framework induced by temperature. Similar order–disorder transitions were also triggered by chemical pressure induced by removing crystalline solvent molecules in the single‐crystal state or by substituting the countercation to change the molecular packing. Structural transitions of the molecular metal oxide [Na@(SO3)2(n‐BuPO3)4MoV4MoVI14O49]5− were examined by single‐crystal X‐ray diffraction analysis. The Na+ encapsulated in the discrete metal‐oxide anion exhibited a reversible order–disorder transition with distortion of the Mo–O molecular framework induced by temperature (see picture).</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><pmid>32856378</pmid><doi>10.1002/anie.202010748</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-8852-6992</orcidid><orcidid>https://orcid.org/0000-0003-4757-4741</orcidid><orcidid>https://orcid.org/0000-0003-4030-786X</orcidid><orcidid>https://orcid.org/0000-0001-9862-3596</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2020-12, Vol.59 (50), p.22446-22450
issn 1433-7851
1521-3773
language eng
recordid cdi_webofscience_primary_000573846100001
source Access via Wiley Online Library
subjects cage compounds
Chemistry
Chemistry, Multidisciplinary
crystal engineering
Ferroelectric materials
Ferroelectricity
Metal oxides
Metals
molybdenum
Phase transitions
Physical Sciences
polyoxometalates
Science & Technology
Size effects
Sulfur trioxide
Temperature
title Structural Phase Transitions of a Molecular Metal Oxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T01%3A39%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Phase%20Transitions%20of%20a%20Molecular%20Metal%20Oxide&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Fujibayashi,%20Masaru&rft.date=2020-12-07&rft.volume=59&rft.issue=50&rft.spage=22446&rft.epage=22450&rft.pages=22446-22450&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202010748&rft_dat=%3Cproquest_webof%3E2438684268%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465702573&rft_id=info:pmid/32856378&rfr_iscdi=true