Mechanisms of M2 Macrophage-Derived Exosomal Long Non-coding RNA PVT1 in Regulating Th17 Cell Response in Experimental Autoimmune Encephalomyelitisa (Retracted Article)

Long non-coding RNA (lncRNA) is pivotal for multiple sclerosis (MS), but the potential mechanism of lncRNA PVT1 in MS animal model, experimental autoimmune encephalomyelitis (EAE) still remains unclear. In this study, macrophages were firstly isolated and induced to polarize into M2 macrophages. M2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in immunology 2020-09, Vol.11, p.1934, Article 1934
Hauptverfasser: Wu, Lei, Xia, Jinjin, Li, Donghui, Kang, Ying, Fang, Wei, Huang, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 1934
container_title Frontiers in immunology
container_volume 11
creator Wu, Lei
Xia, Jinjin
Li, Donghui
Kang, Ying
Fang, Wei
Huang, Peng
description Long non-coding RNA (lncRNA) is pivotal for multiple sclerosis (MS), but the potential mechanism of lncRNA PVT1 in MS animal model, experimental autoimmune encephalomyelitis (EAE) still remains unclear. In this study, macrophages were firstly isolated and induced to polarize into M2 macrophages. M2 macrophage-derived exosomes (M2-exos) were extracted and identified, and EAE mouse model was established and treated with M2-exos. The effect of M2-exos on EAE mice was evaluated by clinical scores. The proportion of Treg and Th17 cells in spinal cord cells and splenocytes, and levels of inflammatory factors were measured. The targeting relationships among PVT1, miR-21-5p, and SOCS5 were verified. The expression of JAKs/STAT3 pathway-related proteins was measured. After M2-exo treatment, the clinical score of EAE mice decreased, and demyelination and inflammatory infiltration improved; Th17 cells decreased, Treg cells increased, and the levels of inflammatory factors decreased significantly. SOCS5 and PVT1 were downregulated and miR-21-5p was upregulated in EAE mice. PVT1 could sponge miR-21-5p to regulate SOCS5. SOCS5 alleviated EAE symptoms by repressing the JAKs/STAT3 pathway. Together, M2-exos-carried lncRNA PVT1 sponged miR-21-5p to upregulate SOCS5 and inactivate the JAKs/STAT3 pathway, thus reducing inflammation and protecting EAE mice. This study may offer novel treatments for MS.
doi_str_mv 10.3389/fimmu.2020.01934
format Article
fullrecord <record><control><sourceid>pubmed_webof</sourceid><recordid>TN_cdi_webofscience_primary_000573636200001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_eb4e03bafb38418983cd128f7d467603</doaj_id><sourcerecordid>33013847</sourcerecordid><originalsourceid>FETCH-LOGICAL-d332t-7d71e8ea284c6ff71e6f88b7bbf565bba0949c6f8ed649eeef17a9140587d4403</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhiMEolXpnRPyEYSy2LETOxekVbqUSrsFrRaukZ2Ms64SO8pHaf8RP7OzLFTtDV88Hr9-ZjxvFL1ldMG5yj9Z13XzIqEJXVCWc_EiOmVZJmKeJOLlk_gkOh_HG4pL5Jzz9HV0wjllXAl5Gv3eQLXX3o3dSIIlm4RsdDWEfq8biC9gcLdQk9VdGEOnW7IOviHXwcdVqB2G2-sl-f5zx4jzZAvN3OrpkN7tmSQFtC0mxz74EQ6C1V2PvA78hKTlPIVD_x7IyleA9drQ3UPrJjdq8n4L06CrCWsvh8lVLXx4E72yuh3h_O9-Fv34stoVX-P1t8urYrmOa86TKZa1ZKBAJ0pUmbV4yKxSRhpj0yw1RtNc5HijoM5EDgCWSZ0zQVMlayEoP4uujtw66Juyx4b1cF8G7co_iTA0pT62VIIRQLnR1uAsmcoVr2qWKIugTGaUI-vzkdXPpoO6wq8Pun0GfX7j3b5swm0pU3Qrlwh49xTw-PKffyj4eBT8AhPsWDnAYT7KEJJKnvEsObjPUK3-X124Cd0Mvgizn_gDyBfB9w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanisms of M2 Macrophage-Derived Exosomal Long Non-coding RNA PVT1 in Regulating Th17 Cell Response in Experimental Autoimmune Encephalomyelitisa (Retracted Article)</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Wu, Lei ; Xia, Jinjin ; Li, Donghui ; Kang, Ying ; Fang, Wei ; Huang, Peng</creator><creatorcontrib>Wu, Lei ; Xia, Jinjin ; Li, Donghui ; Kang, Ying ; Fang, Wei ; Huang, Peng</creatorcontrib><description>Long non-coding RNA (lncRNA) is pivotal for multiple sclerosis (MS), but the potential mechanism of lncRNA PVT1 in MS animal model, experimental autoimmune encephalomyelitis (EAE) still remains unclear. In this study, macrophages were firstly isolated and induced to polarize into M2 macrophages. M2 macrophage-derived exosomes (M2-exos) were extracted and identified, and EAE mouse model was established and treated with M2-exos. The effect of M2-exos on EAE mice was evaluated by clinical scores. The proportion of Treg and Th17 cells in spinal cord cells and splenocytes, and levels of inflammatory factors were measured. The targeting relationships among PVT1, miR-21-5p, and SOCS5 were verified. The expression of JAKs/STAT3 pathway-related proteins was measured. After M2-exo treatment, the clinical score of EAE mice decreased, and demyelination and inflammatory infiltration improved; Th17 cells decreased, Treg cells increased, and the levels of inflammatory factors decreased significantly. SOCS5 and PVT1 were downregulated and miR-21-5p was upregulated in EAE mice. PVT1 could sponge miR-21-5p to regulate SOCS5. SOCS5 alleviated EAE symptoms by repressing the JAKs/STAT3 pathway. Together, M2-exos-carried lncRNA PVT1 sponged miR-21-5p to upregulate SOCS5 and inactivate the JAKs/STAT3 pathway, thus reducing inflammation and protecting EAE mice. This study may offer novel treatments for MS.</description><identifier>ISSN: 1664-3224</identifier><identifier>EISSN: 1664-3224</identifier><identifier>DOI: 10.3389/fimmu.2020.01934</identifier><identifier>PMID: 33013847</identifier><language>eng</language><publisher>LAUSANNE: Frontiers Media Sa</publisher><subject>Animals ; Cells, Cultured ; Encephalomyelitis, Autoimmune, Experimental - genetics ; Encephalomyelitis, Autoimmune, Experimental - immunology ; Encephalomyelitis, Autoimmune, Experimental - metabolism ; Encephalomyelitis, Autoimmune, Experimental - therapy ; exosomes ; Exosomes - genetics ; Exosomes - metabolism ; Exosomes - transplantation ; experimental autoimmune encephalomyelitis ; Immunology ; Janus Kinases - metabolism ; Life Sciences &amp; Biomedicine ; long non-coding RNA PVT1 ; M2 macrophages ; Macrophages, Peritoneal - metabolism ; Macrophages, Peritoneal - transplantation ; Mice ; Mice, Inbred C57BL ; microRNA-21-5p ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Phenotype ; RNA, Long Noncoding - genetics ; RNA, Long Noncoding - metabolism ; Science &amp; Technology ; Signal Transduction ; SOCS5 ; Spinal Cord - immunology ; Spinal Cord - metabolism ; Spleen - immunology ; Spleen - metabolism ; STAT3 Transcription Factor - metabolism ; Suppressor of Cytokine Signaling Proteins - genetics ; Suppressor of Cytokine Signaling Proteins - metabolism ; T-Lymphocytes, Regulatory - immunology ; T-Lymphocytes, Regulatory - metabolism ; Th17 Cells - immunology ; Th17 Cells - metabolism</subject><ispartof>Frontiers in immunology, 2020-09, Vol.11, p.1934, Article 1934</ispartof><rights>Copyright © 2020 Wu, Xia, Li, Kang, Fang and Huang.</rights><rights>Copyright © 2020 Wu, Xia, Li, Kang, Fang and Huang. 2020 Wu, Xia, Li, Kang, Fang and Huang</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>31</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000573636200001</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-d332t-7d71e8ea284c6ff71e6f88b7bbf565bba0949c6f8ed649eeef17a9140587d4403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7500097/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7500097/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27928,27929,28252,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33013847$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Lei</creatorcontrib><creatorcontrib>Xia, Jinjin</creatorcontrib><creatorcontrib>Li, Donghui</creatorcontrib><creatorcontrib>Kang, Ying</creatorcontrib><creatorcontrib>Fang, Wei</creatorcontrib><creatorcontrib>Huang, Peng</creatorcontrib><title>Mechanisms of M2 Macrophage-Derived Exosomal Long Non-coding RNA PVT1 in Regulating Th17 Cell Response in Experimental Autoimmune Encephalomyelitisa (Retracted Article)</title><title>Frontiers in immunology</title><addtitle>FRONT IMMUNOL</addtitle><addtitle>Front Immunol</addtitle><description>Long non-coding RNA (lncRNA) is pivotal for multiple sclerosis (MS), but the potential mechanism of lncRNA PVT1 in MS animal model, experimental autoimmune encephalomyelitis (EAE) still remains unclear. In this study, macrophages were firstly isolated and induced to polarize into M2 macrophages. M2 macrophage-derived exosomes (M2-exos) were extracted and identified, and EAE mouse model was established and treated with M2-exos. The effect of M2-exos on EAE mice was evaluated by clinical scores. The proportion of Treg and Th17 cells in spinal cord cells and splenocytes, and levels of inflammatory factors were measured. The targeting relationships among PVT1, miR-21-5p, and SOCS5 were verified. The expression of JAKs/STAT3 pathway-related proteins was measured. After M2-exo treatment, the clinical score of EAE mice decreased, and demyelination and inflammatory infiltration improved; Th17 cells decreased, Treg cells increased, and the levels of inflammatory factors decreased significantly. SOCS5 and PVT1 were downregulated and miR-21-5p was upregulated in EAE mice. PVT1 could sponge miR-21-5p to regulate SOCS5. SOCS5 alleviated EAE symptoms by repressing the JAKs/STAT3 pathway. Together, M2-exos-carried lncRNA PVT1 sponged miR-21-5p to upregulate SOCS5 and inactivate the JAKs/STAT3 pathway, thus reducing inflammation and protecting EAE mice. This study may offer novel treatments for MS.</description><subject>Animals</subject><subject>Cells, Cultured</subject><subject>Encephalomyelitis, Autoimmune, Experimental - genetics</subject><subject>Encephalomyelitis, Autoimmune, Experimental - immunology</subject><subject>Encephalomyelitis, Autoimmune, Experimental - metabolism</subject><subject>Encephalomyelitis, Autoimmune, Experimental - therapy</subject><subject>exosomes</subject><subject>Exosomes - genetics</subject><subject>Exosomes - metabolism</subject><subject>Exosomes - transplantation</subject><subject>experimental autoimmune encephalomyelitis</subject><subject>Immunology</subject><subject>Janus Kinases - metabolism</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>long non-coding RNA PVT1</subject><subject>M2 macrophages</subject><subject>Macrophages, Peritoneal - metabolism</subject><subject>Macrophages, Peritoneal - transplantation</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>microRNA-21-5p</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Phenotype</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA, Long Noncoding - metabolism</subject><subject>Science &amp; Technology</subject><subject>Signal Transduction</subject><subject>SOCS5</subject><subject>Spinal Cord - immunology</subject><subject>Spinal Cord - metabolism</subject><subject>Spleen - immunology</subject><subject>Spleen - metabolism</subject><subject>STAT3 Transcription Factor - metabolism</subject><subject>Suppressor of Cytokine Signaling Proteins - genetics</subject><subject>Suppressor of Cytokine Signaling Proteins - metabolism</subject><subject>T-Lymphocytes, Regulatory - immunology</subject><subject>T-Lymphocytes, Regulatory - metabolism</subject><subject>Th17 Cells - immunology</subject><subject>Th17 Cells - metabolism</subject><issn>1664-3224</issn><issn>1664-3224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU1v1DAQhiMEolXpnRPyEYSy2LETOxekVbqUSrsFrRaukZ2Ms64SO8pHaf8RP7OzLFTtDV88Hr9-ZjxvFL1ldMG5yj9Z13XzIqEJXVCWc_EiOmVZJmKeJOLlk_gkOh_HG4pL5Jzz9HV0wjllXAl5Gv3eQLXX3o3dSIIlm4RsdDWEfq8biC9gcLdQk9VdGEOnW7IOviHXwcdVqB2G2-sl-f5zx4jzZAvN3OrpkN7tmSQFtC0mxz74EQ6C1V2PvA78hKTlPIVD_x7IyleA9drQ3UPrJjdq8n4L06CrCWsvh8lVLXx4E72yuh3h_O9-Fv34stoVX-P1t8urYrmOa86TKZa1ZKBAJ0pUmbV4yKxSRhpj0yw1RtNc5HijoM5EDgCWSZ0zQVMlayEoP4uujtw66Juyx4b1cF8G7co_iTA0pT62VIIRQLnR1uAsmcoVr2qWKIugTGaUI-vzkdXPpoO6wq8Pun0GfX7j3b5swm0pU3Qrlwh49xTw-PKffyj4eBT8AhPsWDnAYT7KEJJKnvEsObjPUK3-X124Cd0Mvgizn_gDyBfB9w</recordid><startdate>20200904</startdate><enddate>20200904</enddate><creator>Wu, Lei</creator><creator>Xia, Jinjin</creator><creator>Li, Donghui</creator><creator>Kang, Ying</creator><creator>Fang, Wei</creator><creator>Huang, Peng</creator><general>Frontiers Media Sa</general><general>Frontiers Media S.A</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20200904</creationdate><title>Mechanisms of M2 Macrophage-Derived Exosomal Long Non-coding RNA PVT1 in Regulating Th17 Cell Response in Experimental Autoimmune Encephalomyelitisa (Retracted Article)</title><author>Wu, Lei ; Xia, Jinjin ; Li, Donghui ; Kang, Ying ; Fang, Wei ; Huang, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d332t-7d71e8ea284c6ff71e6f88b7bbf565bba0949c6f8ed649eeef17a9140587d4403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Cells, Cultured</topic><topic>Encephalomyelitis, Autoimmune, Experimental - genetics</topic><topic>Encephalomyelitis, Autoimmune, Experimental - immunology</topic><topic>Encephalomyelitis, Autoimmune, Experimental - metabolism</topic><topic>Encephalomyelitis, Autoimmune, Experimental - therapy</topic><topic>exosomes</topic><topic>Exosomes - genetics</topic><topic>Exosomes - metabolism</topic><topic>Exosomes - transplantation</topic><topic>experimental autoimmune encephalomyelitis</topic><topic>Immunology</topic><topic>Janus Kinases - metabolism</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>long non-coding RNA PVT1</topic><topic>M2 macrophages</topic><topic>Macrophages, Peritoneal - metabolism</topic><topic>Macrophages, Peritoneal - transplantation</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>microRNA-21-5p</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Phenotype</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA, Long Noncoding - metabolism</topic><topic>Science &amp; Technology</topic><topic>Signal Transduction</topic><topic>SOCS5</topic><topic>Spinal Cord - immunology</topic><topic>Spinal Cord - metabolism</topic><topic>Spleen - immunology</topic><topic>Spleen - metabolism</topic><topic>STAT3 Transcription Factor - metabolism</topic><topic>Suppressor of Cytokine Signaling Proteins - genetics</topic><topic>Suppressor of Cytokine Signaling Proteins - metabolism</topic><topic>T-Lymphocytes, Regulatory - immunology</topic><topic>T-Lymphocytes, Regulatory - metabolism</topic><topic>Th17 Cells - immunology</topic><topic>Th17 Cells - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Lei</creatorcontrib><creatorcontrib>Xia, Jinjin</creatorcontrib><creatorcontrib>Li, Donghui</creatorcontrib><creatorcontrib>Kang, Ying</creatorcontrib><creatorcontrib>Fang, Wei</creatorcontrib><creatorcontrib>Huang, Peng</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Lei</au><au>Xia, Jinjin</au><au>Li, Donghui</au><au>Kang, Ying</au><au>Fang, Wei</au><au>Huang, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of M2 Macrophage-Derived Exosomal Long Non-coding RNA PVT1 in Regulating Th17 Cell Response in Experimental Autoimmune Encephalomyelitisa (Retracted Article)</atitle><jtitle>Frontiers in immunology</jtitle><stitle>FRONT IMMUNOL</stitle><addtitle>Front Immunol</addtitle><date>2020-09-04</date><risdate>2020</risdate><volume>11</volume><spage>1934</spage><pages>1934-</pages><artnum>1934</artnum><issn>1664-3224</issn><eissn>1664-3224</eissn><abstract>Long non-coding RNA (lncRNA) is pivotal for multiple sclerosis (MS), but the potential mechanism of lncRNA PVT1 in MS animal model, experimental autoimmune encephalomyelitis (EAE) still remains unclear. In this study, macrophages were firstly isolated and induced to polarize into M2 macrophages. M2 macrophage-derived exosomes (M2-exos) were extracted and identified, and EAE mouse model was established and treated with M2-exos. The effect of M2-exos on EAE mice was evaluated by clinical scores. The proportion of Treg and Th17 cells in spinal cord cells and splenocytes, and levels of inflammatory factors were measured. The targeting relationships among PVT1, miR-21-5p, and SOCS5 were verified. The expression of JAKs/STAT3 pathway-related proteins was measured. After M2-exo treatment, the clinical score of EAE mice decreased, and demyelination and inflammatory infiltration improved; Th17 cells decreased, Treg cells increased, and the levels of inflammatory factors decreased significantly. SOCS5 and PVT1 were downregulated and miR-21-5p was upregulated in EAE mice. PVT1 could sponge miR-21-5p to regulate SOCS5. SOCS5 alleviated EAE symptoms by repressing the JAKs/STAT3 pathway. Together, M2-exos-carried lncRNA PVT1 sponged miR-21-5p to upregulate SOCS5 and inactivate the JAKs/STAT3 pathway, thus reducing inflammation and protecting EAE mice. This study may offer novel treatments for MS.</abstract><cop>LAUSANNE</cop><pub>Frontiers Media Sa</pub><pmid>33013847</pmid><doi>10.3389/fimmu.2020.01934</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1664-3224
ispartof Frontiers in immunology, 2020-09, Vol.11, p.1934, Article 1934
issn 1664-3224
1664-3224
language eng
recordid cdi_webofscience_primary_000573636200001CitationCount
source MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Cells, Cultured
Encephalomyelitis, Autoimmune, Experimental - genetics
Encephalomyelitis, Autoimmune, Experimental - immunology
Encephalomyelitis, Autoimmune, Experimental - metabolism
Encephalomyelitis, Autoimmune, Experimental - therapy
exosomes
Exosomes - genetics
Exosomes - metabolism
Exosomes - transplantation
experimental autoimmune encephalomyelitis
Immunology
Janus Kinases - metabolism
Life Sciences & Biomedicine
long non-coding RNA PVT1
M2 macrophages
Macrophages, Peritoneal - metabolism
Macrophages, Peritoneal - transplantation
Mice
Mice, Inbred C57BL
microRNA-21-5p
MicroRNAs - genetics
MicroRNAs - metabolism
Phenotype
RNA, Long Noncoding - genetics
RNA, Long Noncoding - metabolism
Science & Technology
Signal Transduction
SOCS5
Spinal Cord - immunology
Spinal Cord - metabolism
Spleen - immunology
Spleen - metabolism
STAT3 Transcription Factor - metabolism
Suppressor of Cytokine Signaling Proteins - genetics
Suppressor of Cytokine Signaling Proteins - metabolism
T-Lymphocytes, Regulatory - immunology
T-Lymphocytes, Regulatory - metabolism
Th17 Cells - immunology
Th17 Cells - metabolism
title Mechanisms of M2 Macrophage-Derived Exosomal Long Non-coding RNA PVT1 in Regulating Th17 Cell Response in Experimental Autoimmune Encephalomyelitisa (Retracted Article)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T16%3A28%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20M2%20Macrophage-Derived%20Exosomal%20Long%20Non-coding%20RNA%20PVT1%20in%20Regulating%20Th17%20Cell%20Response%20in%20Experimental%20Autoimmune%20Encephalomyelitisa%20(Retracted%20Article)&rft.jtitle=Frontiers%20in%20immunology&rft.au=Wu,%20Lei&rft.date=2020-09-04&rft.volume=11&rft.spage=1934&rft.pages=1934-&rft.artnum=1934&rft.issn=1664-3224&rft.eissn=1664-3224&rft_id=info:doi/10.3389/fimmu.2020.01934&rft_dat=%3Cpubmed_webof%3E33013847%3C/pubmed_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33013847&rft_doaj_id=oai_doaj_org_article_eb4e03bafb38418983cd128f7d467603&rfr_iscdi=true