Effect of acceleration and deceleration of a capsule train running at transonic speed on the flow and heat transfer in the tube

Acceleration and deceleration are required for train operation, and the flow field around the train shows strong unsteady characteristics during the acceleration and deceleration process. Some high speed related aerodynamic phenomena appear in the tube, such as shock waves, and significantly deterio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aerospace science and technology 2020-10, Vol.105, p.105977, Article 105977
Hauptverfasser: Jiqiang, Niu, Yang, Sui, Qiujun, Yu, Xiaoling, Cao, Yanping, Yuan, Xiaofeng, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 105977
container_title Aerospace science and technology
container_volume 105
creator Jiqiang, Niu
Yang, Sui
Qiujun, Yu
Xiaoling, Cao
Yanping, Yuan
Xiaofeng, Yang
description Acceleration and deceleration are required for train operation, and the flow field around the train shows strong unsteady characteristics during the acceleration and deceleration process. Some high speed related aerodynamic phenomena appear in the tube, such as shock waves, and significantly deteriorate the aerodynamic characteristics when the train speed reaches or exceeds the speed of sound. This study focuses on whether there are differences in aerodynamic effects when the train accelerates (decelerates) past the speed of sound, and the influence of different values of acceleration (deceleration) on the aerodynamic effects. The speed and motion of the train were controlled by a user-defined function and a sliding mesh technique in a commercial software of FLUENT, respectively. Aerodynamic heating phenomena and both the formation and the disappearance of shock waves were studied. The spatio-temporal distribution of the flow field parameters (temperature, pressure, etc.) was analyzed. The study found that acceleration and deceleration have different effects on aerodynamic drag, pressure, and temperature at different train speed intervals. With decreasing acceleration (deceleration) amplitudes, the maximum values of pressure and temperature and minimum pressure monitored at the tube wall increased, whereas the minimum temperature at the tube wall decreased.
doi_str_mv 10.1016/j.ast.2020.105977
format Article
fullrecord <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000573520500006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1270963820306593</els_id><sourcerecordid>S1270963820306593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-dff4e37ddb2af4c993e6379f8bc6d44e307fe53c99a20205ce0601f87ce349db3</originalsourceid><addsrcrecordid>eNqNkU9PwyAYhxujiXP6AbxxN50U2jLiyTTzT7LEi54JhRfHMukC1MWTX126TuPJeALe9_e8kIcsuyzwrMBFfb2eyRBnBJPhXHHGjrJJUZM6p6Tgx2lPGM55Teen2VkIa4wx4SWZZJ8LY0BF1BkklYINeBlt55B0Gmn4VRgCSMlt6DeAopfWId87Z90rknEouNA5q1DYAmiUgLgCZDbdbj9qBd8hAx7ZsRv7Fs6zEyM3AS4O6zR7uVs8Nw_58un-sbld5opwFnNtTAmUad0SaUrFOYWaMm7mrap1mVqYGahoasjBQaUA17gwc6aAlly3dJoV41zluxA8GLH19k36D1FgMRgUa5EMioEWo8HEXI3MDtrOBGXBKfjhksKK0Spdlna4Tun5_9ONjXutTde7mNCbEYVk4N2CFwdcW58-R-jO_vHML_AXnB8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of acceleration and deceleration of a capsule train running at transonic speed on the flow and heat transfer in the tube</title><source>Elsevier ScienceDirect Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Jiqiang, Niu ; Yang, Sui ; Qiujun, Yu ; Xiaoling, Cao ; Yanping, Yuan ; Xiaofeng, Yang</creator><creatorcontrib>Jiqiang, Niu ; Yang, Sui ; Qiujun, Yu ; Xiaoling, Cao ; Yanping, Yuan ; Xiaofeng, Yang</creatorcontrib><description>Acceleration and deceleration are required for train operation, and the flow field around the train shows strong unsteady characteristics during the acceleration and deceleration process. Some high speed related aerodynamic phenomena appear in the tube, such as shock waves, and significantly deteriorate the aerodynamic characteristics when the train speed reaches or exceeds the speed of sound. This study focuses on whether there are differences in aerodynamic effects when the train accelerates (decelerates) past the speed of sound, and the influence of different values of acceleration (deceleration) on the aerodynamic effects. The speed and motion of the train were controlled by a user-defined function and a sliding mesh technique in a commercial software of FLUENT, respectively. Aerodynamic heating phenomena and both the formation and the disappearance of shock waves were studied. The spatio-temporal distribution of the flow field parameters (temperature, pressure, etc.) was analyzed. The study found that acceleration and deceleration have different effects on aerodynamic drag, pressure, and temperature at different train speed intervals. With decreasing acceleration (deceleration) amplitudes, the maximum values of pressure and temperature and minimum pressure monitored at the tube wall increased, whereas the minimum temperature at the tube wall decreased.</description><identifier>ISSN: 1270-9638</identifier><identifier>EISSN: 1626-3219</identifier><identifier>DOI: 10.1016/j.ast.2020.105977</identifier><language>eng</language><publisher>ISSY-LES-MOULINEAUX: Elsevier Masson SAS</publisher><subject>Acceleration and deceleration ; Engineering ; Engineering, Aerospace ; Numerical simulation ; Science &amp; Technology ; Shock wave ; Technology ; Transonic speed ; Tube train ; Unsteady aerodynamic characteristics</subject><ispartof>Aerospace science and technology, 2020-10, Vol.105, p.105977, Article 105977</ispartof><rights>2020 Elsevier Masson SAS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>39</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000573520500006</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c297t-dff4e37ddb2af4c993e6379f8bc6d44e307fe53c99a20205ce0601f87ce349db3</citedby><cites>FETCH-LOGICAL-c297t-dff4e37ddb2af4c993e6379f8bc6d44e307fe53c99a20205ce0601f87ce349db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ast.2020.105977$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,28253,46000</link.rule.ids></links><search><creatorcontrib>Jiqiang, Niu</creatorcontrib><creatorcontrib>Yang, Sui</creatorcontrib><creatorcontrib>Qiujun, Yu</creatorcontrib><creatorcontrib>Xiaoling, Cao</creatorcontrib><creatorcontrib>Yanping, Yuan</creatorcontrib><creatorcontrib>Xiaofeng, Yang</creatorcontrib><title>Effect of acceleration and deceleration of a capsule train running at transonic speed on the flow and heat transfer in the tube</title><title>Aerospace science and technology</title><addtitle>AEROSP SCI TECHNOL</addtitle><description>Acceleration and deceleration are required for train operation, and the flow field around the train shows strong unsteady characteristics during the acceleration and deceleration process. Some high speed related aerodynamic phenomena appear in the tube, such as shock waves, and significantly deteriorate the aerodynamic characteristics when the train speed reaches or exceeds the speed of sound. This study focuses on whether there are differences in aerodynamic effects when the train accelerates (decelerates) past the speed of sound, and the influence of different values of acceleration (deceleration) on the aerodynamic effects. The speed and motion of the train were controlled by a user-defined function and a sliding mesh technique in a commercial software of FLUENT, respectively. Aerodynamic heating phenomena and both the formation and the disappearance of shock waves were studied. The spatio-temporal distribution of the flow field parameters (temperature, pressure, etc.) was analyzed. The study found that acceleration and deceleration have different effects on aerodynamic drag, pressure, and temperature at different train speed intervals. With decreasing acceleration (deceleration) amplitudes, the maximum values of pressure and temperature and minimum pressure monitored at the tube wall increased, whereas the minimum temperature at the tube wall decreased.</description><subject>Acceleration and deceleration</subject><subject>Engineering</subject><subject>Engineering, Aerospace</subject><subject>Numerical simulation</subject><subject>Science &amp; Technology</subject><subject>Shock wave</subject><subject>Technology</subject><subject>Transonic speed</subject><subject>Tube train</subject><subject>Unsteady aerodynamic characteristics</subject><issn>1270-9638</issn><issn>1626-3219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkU9PwyAYhxujiXP6AbxxN50U2jLiyTTzT7LEi54JhRfHMukC1MWTX126TuPJeALe9_e8kIcsuyzwrMBFfb2eyRBnBJPhXHHGjrJJUZM6p6Tgx2lPGM55Teen2VkIa4wx4SWZZJ8LY0BF1BkklYINeBlt55B0Gmn4VRgCSMlt6DeAopfWId87Z90rknEouNA5q1DYAmiUgLgCZDbdbj9qBd8hAx7ZsRv7Fs6zEyM3AS4O6zR7uVs8Nw_58un-sbld5opwFnNtTAmUad0SaUrFOYWaMm7mrap1mVqYGahoasjBQaUA17gwc6aAlly3dJoV41zluxA8GLH19k36D1FgMRgUa5EMioEWo8HEXI3MDtrOBGXBKfjhksKK0Spdlna4Tun5_9ONjXutTde7mNCbEYVk4N2CFwdcW58-R-jO_vHML_AXnB8</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Jiqiang, Niu</creator><creator>Yang, Sui</creator><creator>Qiujun, Yu</creator><creator>Xiaoling, Cao</creator><creator>Yanping, Yuan</creator><creator>Xiaofeng, Yang</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202010</creationdate><title>Effect of acceleration and deceleration of a capsule train running at transonic speed on the flow and heat transfer in the tube</title><author>Jiqiang, Niu ; Yang, Sui ; Qiujun, Yu ; Xiaoling, Cao ; Yanping, Yuan ; Xiaofeng, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-dff4e37ddb2af4c993e6379f8bc6d44e307fe53c99a20205ce0601f87ce349db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acceleration and deceleration</topic><topic>Engineering</topic><topic>Engineering, Aerospace</topic><topic>Numerical simulation</topic><topic>Science &amp; Technology</topic><topic>Shock wave</topic><topic>Technology</topic><topic>Transonic speed</topic><topic>Tube train</topic><topic>Unsteady aerodynamic characteristics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiqiang, Niu</creatorcontrib><creatorcontrib>Yang, Sui</creatorcontrib><creatorcontrib>Qiujun, Yu</creatorcontrib><creatorcontrib>Xiaoling, Cao</creatorcontrib><creatorcontrib>Yanping, Yuan</creatorcontrib><creatorcontrib>Xiaofeng, Yang</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Aerospace science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiqiang, Niu</au><au>Yang, Sui</au><au>Qiujun, Yu</au><au>Xiaoling, Cao</au><au>Yanping, Yuan</au><au>Xiaofeng, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of acceleration and deceleration of a capsule train running at transonic speed on the flow and heat transfer in the tube</atitle><jtitle>Aerospace science and technology</jtitle><stitle>AEROSP SCI TECHNOL</stitle><date>2020-10</date><risdate>2020</risdate><volume>105</volume><spage>105977</spage><pages>105977-</pages><artnum>105977</artnum><issn>1270-9638</issn><eissn>1626-3219</eissn><abstract>Acceleration and deceleration are required for train operation, and the flow field around the train shows strong unsteady characteristics during the acceleration and deceleration process. Some high speed related aerodynamic phenomena appear in the tube, such as shock waves, and significantly deteriorate the aerodynamic characteristics when the train speed reaches or exceeds the speed of sound. This study focuses on whether there are differences in aerodynamic effects when the train accelerates (decelerates) past the speed of sound, and the influence of different values of acceleration (deceleration) on the aerodynamic effects. The speed and motion of the train were controlled by a user-defined function and a sliding mesh technique in a commercial software of FLUENT, respectively. Aerodynamic heating phenomena and both the formation and the disappearance of shock waves were studied. The spatio-temporal distribution of the flow field parameters (temperature, pressure, etc.) was analyzed. The study found that acceleration and deceleration have different effects on aerodynamic drag, pressure, and temperature at different train speed intervals. With decreasing acceleration (deceleration) amplitudes, the maximum values of pressure and temperature and minimum pressure monitored at the tube wall increased, whereas the minimum temperature at the tube wall decreased.</abstract><cop>ISSY-LES-MOULINEAUX</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.ast.2020.105977</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1270-9638
ispartof Aerospace science and technology, 2020-10, Vol.105, p.105977, Article 105977
issn 1270-9638
1626-3219
language eng
recordid cdi_webofscience_primary_000573520500006
source Elsevier ScienceDirect Journals Complete; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Acceleration and deceleration
Engineering
Engineering, Aerospace
Numerical simulation
Science & Technology
Shock wave
Technology
Transonic speed
Tube train
Unsteady aerodynamic characteristics
title Effect of acceleration and deceleration of a capsule train running at transonic speed on the flow and heat transfer in the tube
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T04%3A37%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20acceleration%20and%20deceleration%20of%20a%20capsule%20train%20running%20at%20transonic%20speed%20on%20the%20flow%20and%20heat%20transfer%20in%20the%20tube&rft.jtitle=Aerospace%20science%20and%20technology&rft.au=Jiqiang,%20Niu&rft.date=2020-10&rft.volume=105&rft.spage=105977&rft.pages=105977-&rft.artnum=105977&rft.issn=1270-9638&rft.eissn=1626-3219&rft_id=info:doi/10.1016/j.ast.2020.105977&rft_dat=%3Celsevier_webof%3ES1270963820306593%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1270963820306593&rfr_iscdi=true