ELKO in polar form
In this paper, we consider the theory of ELKO written in their polar form, in which the spinorial components are converted into products of a real module times a complex unitary phase while the covariance under spin transformations is still maintained: we derive an intriguing conclusion about the st...
Gespeichert in:
Veröffentlicht in: | The European physical journal. ST, Special topics Special topics, 2020-09, Vol.229 (11), p.2117-2131 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2131 |
---|---|
container_issue | 11 |
container_start_page | 2117 |
container_title | The European physical journal. ST, Special topics |
container_volume | 229 |
creator | Fabbri, Luca |
description | In this paper, we consider the theory of ELKO written in their polar form, in which the spinorial components are converted into products of a real module times a complex unitary phase while the covariance under spin transformations is still maintained: we derive an intriguing conclusion about the structure of ELKO in their polar decomposition when seen from the perspective of a new type of adjunction procedure defined for ELKO themselves. General comments will be given in the end. |
doi_str_mv | 10.1140/epjst/e2020-900222-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000571834700007CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450384547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-d656b94e588f4a13c6f9059c36d7a2a28be0209ae1e6530a813e77e5f32708623</originalsourceid><addsrcrecordid>eNqNjztPwzAQgC0EEqWwMDNUYkSh57czoqg8RKUuMFtuekap2jjYqRD_HtPw2BCTb_i-832EXFC4plTAFLt16qfIgEFRAjDGCn5ARrSUtFAC6OH3zKU8JicprQGkYiUfkfPZ_HExadpJFzYuTnyI21Ny5N0m4dnXOybPt7On6r6YL-4eqpt5UXMm-2KlpFqWAqUxXjjKa-VLkGXN1Uo75phZYr6ndEhRSQ7OUI5ao_ScaTCK8TG5HPZ2MbzuMPV2HXaxzV9aJiRwI6TQmRIDVceQUkRvu9hsXXy3FOxnvd3X2329Heotz5oZtDdcBp_qBtsaf1TI_ZoaLnSeQFdN7_omtFXYtX1Wr_6vZloOdMpE-4Lxt-LPAz8AOrV9Kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450384547</pqid></control><display><type>article</type><title>ELKO in polar form</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Fabbri, Luca</creator><creatorcontrib>Fabbri, Luca</creatorcontrib><description>In this paper, we consider the theory of ELKO written in their polar form, in which the spinorial components are converted into products of a real module times a complex unitary phase while the covariance under spin transformations is still maintained: we derive an intriguing conclusion about the structure of ELKO in their polar decomposition when seen from the perspective of a new type of adjunction procedure defined for ELKO themselves. General comments will be given in the end.</description><identifier>ISSN: 1951-6355</identifier><identifier>EISSN: 1951-6401</identifier><identifier>DOI: 10.1140/epjst/e2020-900222-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Atomic ; Classical and Continuum Physics ; Condensed Matter Physics ; Covariance ; Elko and Mass Dimension One Fermions ; Materials Science ; Measurement Science and Instrumentation ; Molecular ; Optical and Plasma Physics ; Physical Sciences ; Physics ; Physics and Astronomy ; Physics, Multidisciplinary ; Regular Article ; Science & Technology</subject><ispartof>The European physical journal. ST, Special topics, 2020-09, Vol.229 (11), p.2117-2131</ispartof><rights>EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>6</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000571834700007</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c325t-d656b94e588f4a13c6f9059c36d7a2a28be0209ae1e6530a813e77e5f32708623</citedby><cites>FETCH-LOGICAL-c325t-d656b94e588f4a13c6f9059c36d7a2a28be0209ae1e6530a813e77e5f32708623</cites><orcidid>0000-0002-9186-2807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjst/e2020-900222-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjst/e2020-900222-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,28253,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Fabbri, Luca</creatorcontrib><title>ELKO in polar form</title><title>The European physical journal. ST, Special topics</title><addtitle>Eur. Phys. J. Spec. Top</addtitle><addtitle>EUR PHYS J-SPEC TOP</addtitle><description>In this paper, we consider the theory of ELKO written in their polar form, in which the spinorial components are converted into products of a real module times a complex unitary phase while the covariance under spin transformations is still maintained: we derive an intriguing conclusion about the structure of ELKO in their polar decomposition when seen from the perspective of a new type of adjunction procedure defined for ELKO themselves. General comments will be given in the end.</description><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Condensed Matter Physics</subject><subject>Covariance</subject><subject>Elko and Mass Dimension One Fermions</subject><subject>Materials Science</subject><subject>Measurement Science and Instrumentation</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics, Multidisciplinary</subject><subject>Regular Article</subject><subject>Science & Technology</subject><issn>1951-6355</issn><issn>1951-6401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNjztPwzAQgC0EEqWwMDNUYkSh57czoqg8RKUuMFtuekap2jjYqRD_HtPw2BCTb_i-832EXFC4plTAFLt16qfIgEFRAjDGCn5ARrSUtFAC6OH3zKU8JicprQGkYiUfkfPZ_HExadpJFzYuTnyI21Ny5N0m4dnXOybPt7On6r6YL-4eqpt5UXMm-2KlpFqWAqUxXjjKa-VLkGXN1Uo75phZYr6ndEhRSQ7OUI5ao_ScaTCK8TG5HPZ2MbzuMPV2HXaxzV9aJiRwI6TQmRIDVceQUkRvu9hsXXy3FOxnvd3X2329Heotz5oZtDdcBp_qBtsaf1TI_ZoaLnSeQFdN7_omtFXYtX1Wr_6vZloOdMpE-4Lxt-LPAz8AOrV9Kg</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Fabbri, Luca</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9186-2807</orcidid></search><sort><creationdate>20200901</creationdate><title>ELKO in polar form</title><author>Fabbri, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-d656b94e588f4a13c6f9059c36d7a2a28be0209ae1e6530a813e77e5f32708623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Condensed Matter Physics</topic><topic>Covariance</topic><topic>Elko and Mass Dimension One Fermions</topic><topic>Materials Science</topic><topic>Measurement Science and Instrumentation</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics, Multidisciplinary</topic><topic>Regular Article</topic><topic>Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fabbri, Luca</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>The European physical journal. ST, Special topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fabbri, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ELKO in polar form</atitle><jtitle>The European physical journal. ST, Special topics</jtitle><stitle>Eur. Phys. J. Spec. Top</stitle><stitle>EUR PHYS J-SPEC TOP</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>229</volume><issue>11</issue><spage>2117</spage><epage>2131</epage><pages>2117-2131</pages><issn>1951-6355</issn><eissn>1951-6401</eissn><abstract>In this paper, we consider the theory of ELKO written in their polar form, in which the spinorial components are converted into products of a real module times a complex unitary phase while the covariance under spin transformations is still maintained: we derive an intriguing conclusion about the structure of ELKO in their polar decomposition when seen from the perspective of a new type of adjunction procedure defined for ELKO themselves. General comments will be given in the end.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjst/e2020-900222-3</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9186-2807</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1951-6355 |
ispartof | The European physical journal. ST, Special topics, 2020-09, Vol.229 (11), p.2117-2131 |
issn | 1951-6355 1951-6401 |
language | eng |
recordid | cdi_webofscience_primary_000571834700007CitationCount |
source | SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Atomic Classical and Continuum Physics Condensed Matter Physics Covariance Elko and Mass Dimension One Fermions Materials Science Measurement Science and Instrumentation Molecular Optical and Plasma Physics Physical Sciences Physics Physics and Astronomy Physics, Multidisciplinary Regular Article Science & Technology |
title | ELKO in polar form |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T00%3A48%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ELKO%20in%20polar%20form&rft.jtitle=The%20European%20physical%20journal.%20ST,%20Special%20topics&rft.au=Fabbri,%20Luca&rft.date=2020-09-01&rft.volume=229&rft.issue=11&rft.spage=2117&rft.epage=2131&rft.pages=2117-2131&rft.issn=1951-6355&rft.eissn=1951-6401&rft_id=info:doi/10.1140/epjst/e2020-900222-3&rft_dat=%3Cproquest_webof%3E2450384547%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450384547&rft_id=info:pmid/&rfr_iscdi=true |