ELKO in polar form

In this paper, we consider the theory of ELKO written in their polar form, in which the spinorial components are converted into products of a real module times a complex unitary phase while the covariance under spin transformations is still maintained: we derive an intriguing conclusion about the st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. ST, Special topics Special topics, 2020-09, Vol.229 (11), p.2117-2131
1. Verfasser: Fabbri, Luca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2131
container_issue 11
container_start_page 2117
container_title The European physical journal. ST, Special topics
container_volume 229
creator Fabbri, Luca
description In this paper, we consider the theory of ELKO written in their polar form, in which the spinorial components are converted into products of a real module times a complex unitary phase while the covariance under spin transformations is still maintained: we derive an intriguing conclusion about the structure of ELKO in their polar decomposition when seen from the perspective of a new type of adjunction procedure defined for ELKO themselves. General comments will be given in the end.
doi_str_mv 10.1140/epjst/e2020-900222-3
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000571834700007CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450384547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-d656b94e588f4a13c6f9059c36d7a2a28be0209ae1e6530a813e77e5f32708623</originalsourceid><addsrcrecordid>eNqNjztPwzAQgC0EEqWwMDNUYkSh57czoqg8RKUuMFtuekap2jjYqRD_HtPw2BCTb_i-832EXFC4plTAFLt16qfIgEFRAjDGCn5ARrSUtFAC6OH3zKU8JicprQGkYiUfkfPZ_HExadpJFzYuTnyI21Ny5N0m4dnXOybPt7On6r6YL-4eqpt5UXMm-2KlpFqWAqUxXjjKa-VLkGXN1Uo75phZYr6ndEhRSQ7OUI5ao_ScaTCK8TG5HPZ2MbzuMPV2HXaxzV9aJiRwI6TQmRIDVceQUkRvu9hsXXy3FOxnvd3X2329Heotz5oZtDdcBp_qBtsaf1TI_ZoaLnSeQFdN7_omtFXYtX1Wr_6vZloOdMpE-4Lxt-LPAz8AOrV9Kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450384547</pqid></control><display><type>article</type><title>ELKO in polar form</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Fabbri, Luca</creator><creatorcontrib>Fabbri, Luca</creatorcontrib><description>In this paper, we consider the theory of ELKO written in their polar form, in which the spinorial components are converted into products of a real module times a complex unitary phase while the covariance under spin transformations is still maintained: we derive an intriguing conclusion about the structure of ELKO in their polar decomposition when seen from the perspective of a new type of adjunction procedure defined for ELKO themselves. General comments will be given in the end.</description><identifier>ISSN: 1951-6355</identifier><identifier>EISSN: 1951-6401</identifier><identifier>DOI: 10.1140/epjst/e2020-900222-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Atomic ; Classical and Continuum Physics ; Condensed Matter Physics ; Covariance ; Elko and Mass Dimension One Fermions ; Materials Science ; Measurement Science and Instrumentation ; Molecular ; Optical and Plasma Physics ; Physical Sciences ; Physics ; Physics and Astronomy ; Physics, Multidisciplinary ; Regular Article ; Science &amp; Technology</subject><ispartof>The European physical journal. ST, Special topics, 2020-09, Vol.229 (11), p.2117-2131</ispartof><rights>EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>6</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000571834700007</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c325t-d656b94e588f4a13c6f9059c36d7a2a28be0209ae1e6530a813e77e5f32708623</citedby><cites>FETCH-LOGICAL-c325t-d656b94e588f4a13c6f9059c36d7a2a28be0209ae1e6530a813e77e5f32708623</cites><orcidid>0000-0002-9186-2807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjst/e2020-900222-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjst/e2020-900222-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,28253,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Fabbri, Luca</creatorcontrib><title>ELKO in polar form</title><title>The European physical journal. ST, Special topics</title><addtitle>Eur. Phys. J. Spec. Top</addtitle><addtitle>EUR PHYS J-SPEC TOP</addtitle><description>In this paper, we consider the theory of ELKO written in their polar form, in which the spinorial components are converted into products of a real module times a complex unitary phase while the covariance under spin transformations is still maintained: we derive an intriguing conclusion about the structure of ELKO in their polar decomposition when seen from the perspective of a new type of adjunction procedure defined for ELKO themselves. General comments will be given in the end.</description><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Condensed Matter Physics</subject><subject>Covariance</subject><subject>Elko and Mass Dimension One Fermions</subject><subject>Materials Science</subject><subject>Measurement Science and Instrumentation</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics, Multidisciplinary</subject><subject>Regular Article</subject><subject>Science &amp; Technology</subject><issn>1951-6355</issn><issn>1951-6401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNjztPwzAQgC0EEqWwMDNUYkSh57czoqg8RKUuMFtuekap2jjYqRD_HtPw2BCTb_i-832EXFC4plTAFLt16qfIgEFRAjDGCn5ARrSUtFAC6OH3zKU8JicprQGkYiUfkfPZ_HExadpJFzYuTnyI21Ny5N0m4dnXOybPt7On6r6YL-4eqpt5UXMm-2KlpFqWAqUxXjjKa-VLkGXN1Uo75phZYr6ndEhRSQ7OUI5ao_ScaTCK8TG5HPZ2MbzuMPV2HXaxzV9aJiRwI6TQmRIDVceQUkRvu9hsXXy3FOxnvd3X2329Heotz5oZtDdcBp_qBtsaf1TI_ZoaLnSeQFdN7_omtFXYtX1Wr_6vZloOdMpE-4Lxt-LPAz8AOrV9Kg</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Fabbri, Luca</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9186-2807</orcidid></search><sort><creationdate>20200901</creationdate><title>ELKO in polar form</title><author>Fabbri, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-d656b94e588f4a13c6f9059c36d7a2a28be0209ae1e6530a813e77e5f32708623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Condensed Matter Physics</topic><topic>Covariance</topic><topic>Elko and Mass Dimension One Fermions</topic><topic>Materials Science</topic><topic>Measurement Science and Instrumentation</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics, Multidisciplinary</topic><topic>Regular Article</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fabbri, Luca</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>The European physical journal. ST, Special topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fabbri, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ELKO in polar form</atitle><jtitle>The European physical journal. ST, Special topics</jtitle><stitle>Eur. Phys. J. Spec. Top</stitle><stitle>EUR PHYS J-SPEC TOP</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>229</volume><issue>11</issue><spage>2117</spage><epage>2131</epage><pages>2117-2131</pages><issn>1951-6355</issn><eissn>1951-6401</eissn><abstract>In this paper, we consider the theory of ELKO written in their polar form, in which the spinorial components are converted into products of a real module times a complex unitary phase while the covariance under spin transformations is still maintained: we derive an intriguing conclusion about the structure of ELKO in their polar decomposition when seen from the perspective of a new type of adjunction procedure defined for ELKO themselves. General comments will be given in the end.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjst/e2020-900222-3</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9186-2807</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1951-6355
ispartof The European physical journal. ST, Special topics, 2020-09, Vol.229 (11), p.2117-2131
issn 1951-6355
1951-6401
language eng
recordid cdi_webofscience_primary_000571834700007CitationCount
source SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Atomic
Classical and Continuum Physics
Condensed Matter Physics
Covariance
Elko and Mass Dimension One Fermions
Materials Science
Measurement Science and Instrumentation
Molecular
Optical and Plasma Physics
Physical Sciences
Physics
Physics and Astronomy
Physics, Multidisciplinary
Regular Article
Science & Technology
title ELKO in polar form
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T00%3A48%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ELKO%20in%20polar%20form&rft.jtitle=The%20European%20physical%20journal.%20ST,%20Special%20topics&rft.au=Fabbri,%20Luca&rft.date=2020-09-01&rft.volume=229&rft.issue=11&rft.spage=2117&rft.epage=2131&rft.pages=2117-2131&rft.issn=1951-6355&rft.eissn=1951-6401&rft_id=info:doi/10.1140/epjst/e2020-900222-3&rft_dat=%3Cproquest_webof%3E2450384547%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450384547&rft_id=info:pmid/&rfr_iscdi=true