Structural and Functional Maturation of Rat Primary Motor Cortex Layer V Neurons

Rodent neocortical neurons undergo prominent postnatal development and maturation. The process is associated with structural and functional maturation of the axon initial segment (AIS), the site of action potential initiation. In this regard, cell size and optimal AIS length are interconnected. In s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2020-08, Vol.21 (17), p.6101, Article 6101
Hauptverfasser: Benedetti, Bruno, Dannehl, Dominik, Janssen, Jan Maximilian, Corcelli, Corinna, Couillard-Despres, Sebastien, Engelhardt, Maren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page 6101
container_title International journal of molecular sciences
container_volume 21
creator Benedetti, Bruno
Dannehl, Dominik
Janssen, Jan Maximilian
Corcelli, Corinna
Couillard-Despres, Sebastien
Engelhardt, Maren
description Rodent neocortical neurons undergo prominent postnatal development and maturation. The process is associated with structural and functional maturation of the axon initial segment (AIS), the site of action potential initiation. In this regard, cell size and optimal AIS length are interconnected. In sensory cortices, developmental onset of sensory input and consequent changes in network activity cause phasic AIS plasticity that can also control functional output. In non-sensory cortices, network input driving phasic events should be less prominent. We, therefore, explored the relationship between postnatal functional maturation and AIS maturation in principal neurons of the primary motor cortex layer V (M1LV), a non-sensory area of the rat brain. We hypothesized that a rather continuous process of AIS maturation and elongation would reflect cell growth, accompanied by progressive refinement of functional output properties. We found that, in the first two postnatal weeks, cell growth prompted substantial decline of neuronal input resistance, such that older neurons needed larger input current to reach rheobase and fire action potentials. In the same period, we observed the most prominent AIS elongation and significant maturation of functional output properties. Alternating phases of AIS plasticity did not occur, and changes in functional output properties were largely justified by AIS elongation. From the third postnatal week up to five months of age, cell growth, AIS elongation, and functional output maturation were marginal. Thus, AIS maturation in M1LV is a continuous process that attunes the functional output of pyramidal neurons and associates with early postnatal development to counterbalance increasing electrical leakage due to cell growth.
doi_str_mv 10.3390/ijms21176101
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000570181300001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a8fd7efb62d4440c95e4f520e2d1a5f6</doaj_id><sourcerecordid>2438347486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-2a0ef3ae449074acf652e7106478315b0a92f89b56ab4821fdec9dee7145ddf03</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhiMEoqVw44wicUGChfFX7FyQUESh0hYqvq6W44xLVtm42A7Qf4-zKastJ04ezzzzejxvUTwm8JKxGl71m22khMiKALlTHBNO6QqgkncP4qPiQYwbAMqoqO8XR4wqLglVx8XF5xQmm6ZghtKMXXk6jTb1fszXczOn50vpXfnJpPIi9FsTrstzn3woGx8S_i7X5hpD-a38gFPwY3xY3HNmiPjo5jwpvp6-_dK8X60_vjtr3qxXlkuVVtQAOmaQ8xokN9ZVgqIkUOUqI6IFU1On6lZUpuWKEtehrTvMCBdd54CdFGeLbufNRl8tk2lver1L-HCpTUi9HVAb5TqJrq1oxzkHWwvkTlBA2hEjXJW1Xi9aV1O7xc7imPI-boneroz9d33pf2opIHsgssCzG4Hgf0wYk9720eIwmBH9FDXlTCrBaD2_9fQfdOOnkPe9oxTjkquZerFQNvgYA7r9MAT0bLs-tD3jTw4_sIf_-pwBtQC_sPUu2h5Hi3sMAIQEogjLEZCmTzvbGz-NKbc-__9W9geMJ8mI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438347486</pqid></control><display><type>article</type><title>Structural and Functional Maturation of Rat Primary Motor Cortex Layer V Neurons</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Benedetti, Bruno ; Dannehl, Dominik ; Janssen, Jan Maximilian ; Corcelli, Corinna ; Couillard-Despres, Sebastien ; Engelhardt, Maren</creator><creatorcontrib>Benedetti, Bruno ; Dannehl, Dominik ; Janssen, Jan Maximilian ; Corcelli, Corinna ; Couillard-Despres, Sebastien ; Engelhardt, Maren</creatorcontrib><description>Rodent neocortical neurons undergo prominent postnatal development and maturation. The process is associated with structural and functional maturation of the axon initial segment (AIS), the site of action potential initiation. In this regard, cell size and optimal AIS length are interconnected. In sensory cortices, developmental onset of sensory input and consequent changes in network activity cause phasic AIS plasticity that can also control functional output. In non-sensory cortices, network input driving phasic events should be less prominent. We, therefore, explored the relationship between postnatal functional maturation and AIS maturation in principal neurons of the primary motor cortex layer V (M1LV), a non-sensory area of the rat brain. We hypothesized that a rather continuous process of AIS maturation and elongation would reflect cell growth, accompanied by progressive refinement of functional output properties. We found that, in the first two postnatal weeks, cell growth prompted substantial decline of neuronal input resistance, such that older neurons needed larger input current to reach rheobase and fire action potentials. In the same period, we observed the most prominent AIS elongation and significant maturation of functional output properties. Alternating phases of AIS plasticity did not occur, and changes in functional output properties were largely justified by AIS elongation. From the third postnatal week up to five months of age, cell growth, AIS elongation, and functional output maturation were marginal. Thus, AIS maturation in M1LV is a continuous process that attunes the functional output of pyramidal neurons and associates with early postnatal development to counterbalance increasing electrical leakage due to cell growth.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21176101</identifier><identifier>PMID: 32847128</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Action potential ; Action Potentials - physiology ; Age Factors ; Age groups ; Animals ; axon initial segment (AIS) ; Axon Initial Segment - physiology ; Biochemistry &amp; Molecular Biology ; Cell Differentiation ; Cell growth ; Cell size ; Cells, Cultured ; Chemistry ; Chemistry, Multidisciplinary ; development ; Elongation ; Growth - physiology ; Life Sciences &amp; Biomedicine ; Maturation ; Models, Neurological ; Morphology ; motor cortex ; Motor Cortex - cytology ; Motor Cortex - growth &amp; development ; Motor Cortex - physiology ; motor neurons ; Motor Neurons - physiology ; Neurogenesis - physiology ; Neuronal Plasticity ; Neurons ; patch clamp ; Physical Sciences ; Physiology ; Plastic properties ; Pyramidal cells ; Rats ; Science &amp; Technology ; Somatosensory cortex ; Structure-function relationships</subject><ispartof>International journal of molecular sciences, 2020-08, Vol.21 (17), p.6101, Article 6101</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000570181300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c478t-2a0ef3ae449074acf652e7106478315b0a92f89b56ab4821fdec9dee7145ddf03</citedby><cites>FETCH-LOGICAL-c478t-2a0ef3ae449074acf652e7106478315b0a92f89b56ab4821fdec9dee7145ddf03</cites><orcidid>0000-0001-8020-6604 ; 0000-0002-4286-5067 ; 0000-0002-8486-6412</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7503395/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7503395/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,28253,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32847128$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Benedetti, Bruno</creatorcontrib><creatorcontrib>Dannehl, Dominik</creatorcontrib><creatorcontrib>Janssen, Jan Maximilian</creatorcontrib><creatorcontrib>Corcelli, Corinna</creatorcontrib><creatorcontrib>Couillard-Despres, Sebastien</creatorcontrib><creatorcontrib>Engelhardt, Maren</creatorcontrib><title>Structural and Functional Maturation of Rat Primary Motor Cortex Layer V Neurons</title><title>International journal of molecular sciences</title><addtitle>INT J MOL SCI</addtitle><addtitle>Int J Mol Sci</addtitle><description>Rodent neocortical neurons undergo prominent postnatal development and maturation. The process is associated with structural and functional maturation of the axon initial segment (AIS), the site of action potential initiation. In this regard, cell size and optimal AIS length are interconnected. In sensory cortices, developmental onset of sensory input and consequent changes in network activity cause phasic AIS plasticity that can also control functional output. In non-sensory cortices, network input driving phasic events should be less prominent. We, therefore, explored the relationship between postnatal functional maturation and AIS maturation in principal neurons of the primary motor cortex layer V (M1LV), a non-sensory area of the rat brain. We hypothesized that a rather continuous process of AIS maturation and elongation would reflect cell growth, accompanied by progressive refinement of functional output properties. We found that, in the first two postnatal weeks, cell growth prompted substantial decline of neuronal input resistance, such that older neurons needed larger input current to reach rheobase and fire action potentials. In the same period, we observed the most prominent AIS elongation and significant maturation of functional output properties. Alternating phases of AIS plasticity did not occur, and changes in functional output properties were largely justified by AIS elongation. From the third postnatal week up to five months of age, cell growth, AIS elongation, and functional output maturation were marginal. Thus, AIS maturation in M1LV is a continuous process that attunes the functional output of pyramidal neurons and associates with early postnatal development to counterbalance increasing electrical leakage due to cell growth.</description><subject>Action potential</subject><subject>Action Potentials - physiology</subject><subject>Age Factors</subject><subject>Age groups</subject><subject>Animals</subject><subject>axon initial segment (AIS)</subject><subject>Axon Initial Segment - physiology</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Cell Differentiation</subject><subject>Cell growth</subject><subject>Cell size</subject><subject>Cells, Cultured</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>development</subject><subject>Elongation</subject><subject>Growth - physiology</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Maturation</subject><subject>Models, Neurological</subject><subject>Morphology</subject><subject>motor cortex</subject><subject>Motor Cortex - cytology</subject><subject>Motor Cortex - growth &amp; development</subject><subject>Motor Cortex - physiology</subject><subject>motor neurons</subject><subject>Motor Neurons - physiology</subject><subject>Neurogenesis - physiology</subject><subject>Neuronal Plasticity</subject><subject>Neurons</subject><subject>patch clamp</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Plastic properties</subject><subject>Pyramidal cells</subject><subject>Rats</subject><subject>Science &amp; Technology</subject><subject>Somatosensory cortex</subject><subject>Structure-function relationships</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU1v1DAQhiMEoqVw44wicUGChfFX7FyQUESh0hYqvq6W44xLVtm42A7Qf4-zKastJ04ezzzzejxvUTwm8JKxGl71m22khMiKALlTHBNO6QqgkncP4qPiQYwbAMqoqO8XR4wqLglVx8XF5xQmm6ZghtKMXXk6jTb1fszXczOn50vpXfnJpPIi9FsTrstzn3woGx8S_i7X5hpD-a38gFPwY3xY3HNmiPjo5jwpvp6-_dK8X60_vjtr3qxXlkuVVtQAOmaQ8xokN9ZVgqIkUOUqI6IFU1On6lZUpuWKEtehrTvMCBdd54CdFGeLbufNRl8tk2lver1L-HCpTUi9HVAb5TqJrq1oxzkHWwvkTlBA2hEjXJW1Xi9aV1O7xc7imPI-boneroz9d33pf2opIHsgssCzG4Hgf0wYk9720eIwmBH9FDXlTCrBaD2_9fQfdOOnkPe9oxTjkquZerFQNvgYA7r9MAT0bLs-tD3jTw4_sIf_-pwBtQC_sPUu2h5Hi3sMAIQEogjLEZCmTzvbGz-NKbc-__9W9geMJ8mI</recordid><startdate>20200824</startdate><enddate>20200824</enddate><creator>Benedetti, Bruno</creator><creator>Dannehl, Dominik</creator><creator>Janssen, Jan Maximilian</creator><creator>Corcelli, Corinna</creator><creator>Couillard-Despres, Sebastien</creator><creator>Engelhardt, Maren</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8020-6604</orcidid><orcidid>https://orcid.org/0000-0002-4286-5067</orcidid><orcidid>https://orcid.org/0000-0002-8486-6412</orcidid></search><sort><creationdate>20200824</creationdate><title>Structural and Functional Maturation of Rat Primary Motor Cortex Layer V Neurons</title><author>Benedetti, Bruno ; Dannehl, Dominik ; Janssen, Jan Maximilian ; Corcelli, Corinna ; Couillard-Despres, Sebastien ; Engelhardt, Maren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-2a0ef3ae449074acf652e7106478315b0a92f89b56ab4821fdec9dee7145ddf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Action potential</topic><topic>Action Potentials - physiology</topic><topic>Age Factors</topic><topic>Age groups</topic><topic>Animals</topic><topic>axon initial segment (AIS)</topic><topic>Axon Initial Segment - physiology</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Cell Differentiation</topic><topic>Cell growth</topic><topic>Cell size</topic><topic>Cells, Cultured</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>development</topic><topic>Elongation</topic><topic>Growth - physiology</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Maturation</topic><topic>Models, Neurological</topic><topic>Morphology</topic><topic>motor cortex</topic><topic>Motor Cortex - cytology</topic><topic>Motor Cortex - growth &amp; development</topic><topic>Motor Cortex - physiology</topic><topic>motor neurons</topic><topic>Motor Neurons - physiology</topic><topic>Neurogenesis - physiology</topic><topic>Neuronal Plasticity</topic><topic>Neurons</topic><topic>patch clamp</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Plastic properties</topic><topic>Pyramidal cells</topic><topic>Rats</topic><topic>Science &amp; Technology</topic><topic>Somatosensory cortex</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benedetti, Bruno</creatorcontrib><creatorcontrib>Dannehl, Dominik</creatorcontrib><creatorcontrib>Janssen, Jan Maximilian</creatorcontrib><creatorcontrib>Corcelli, Corinna</creatorcontrib><creatorcontrib>Couillard-Despres, Sebastien</creatorcontrib><creatorcontrib>Engelhardt, Maren</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benedetti, Bruno</au><au>Dannehl, Dominik</au><au>Janssen, Jan Maximilian</au><au>Corcelli, Corinna</au><au>Couillard-Despres, Sebastien</au><au>Engelhardt, Maren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and Functional Maturation of Rat Primary Motor Cortex Layer V Neurons</atitle><jtitle>International journal of molecular sciences</jtitle><stitle>INT J MOL SCI</stitle><addtitle>Int J Mol Sci</addtitle><date>2020-08-24</date><risdate>2020</risdate><volume>21</volume><issue>17</issue><spage>6101</spage><pages>6101-</pages><artnum>6101</artnum><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Rodent neocortical neurons undergo prominent postnatal development and maturation. The process is associated with structural and functional maturation of the axon initial segment (AIS), the site of action potential initiation. In this regard, cell size and optimal AIS length are interconnected. In sensory cortices, developmental onset of sensory input and consequent changes in network activity cause phasic AIS plasticity that can also control functional output. In non-sensory cortices, network input driving phasic events should be less prominent. We, therefore, explored the relationship between postnatal functional maturation and AIS maturation in principal neurons of the primary motor cortex layer V (M1LV), a non-sensory area of the rat brain. We hypothesized that a rather continuous process of AIS maturation and elongation would reflect cell growth, accompanied by progressive refinement of functional output properties. We found that, in the first two postnatal weeks, cell growth prompted substantial decline of neuronal input resistance, such that older neurons needed larger input current to reach rheobase and fire action potentials. In the same period, we observed the most prominent AIS elongation and significant maturation of functional output properties. Alternating phases of AIS plasticity did not occur, and changes in functional output properties were largely justified by AIS elongation. From the third postnatal week up to five months of age, cell growth, AIS elongation, and functional output maturation were marginal. Thus, AIS maturation in M1LV is a continuous process that attunes the functional output of pyramidal neurons and associates with early postnatal development to counterbalance increasing electrical leakage due to cell growth.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>32847128</pmid><doi>10.3390/ijms21176101</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8020-6604</orcidid><orcidid>https://orcid.org/0000-0002-4286-5067</orcidid><orcidid>https://orcid.org/0000-0002-8486-6412</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2020-08, Vol.21 (17), p.6101, Article 6101
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_webofscience_primary_000570181300001CitationCount
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Action potential
Action Potentials - physiology
Age Factors
Age groups
Animals
axon initial segment (AIS)
Axon Initial Segment - physiology
Biochemistry & Molecular Biology
Cell Differentiation
Cell growth
Cell size
Cells, Cultured
Chemistry
Chemistry, Multidisciplinary
development
Elongation
Growth - physiology
Life Sciences & Biomedicine
Maturation
Models, Neurological
Morphology
motor cortex
Motor Cortex - cytology
Motor Cortex - growth & development
Motor Cortex - physiology
motor neurons
Motor Neurons - physiology
Neurogenesis - physiology
Neuronal Plasticity
Neurons
patch clamp
Physical Sciences
Physiology
Plastic properties
Pyramidal cells
Rats
Science & Technology
Somatosensory cortex
Structure-function relationships
title Structural and Functional Maturation of Rat Primary Motor Cortex Layer V Neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T09%3A28%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20Functional%20Maturation%20of%20Rat%20Primary%20Motor%20Cortex%20Layer%20V%20Neurons&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Benedetti,%20Bruno&rft.date=2020-08-24&rft.volume=21&rft.issue=17&rft.spage=6101&rft.pages=6101-&rft.artnum=6101&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21176101&rft_dat=%3Cproquest_webof%3E2438347486%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438347486&rft_id=info:pmid/32847128&rft_doaj_id=oai_doaj_org_article_a8fd7efb62d4440c95e4f520e2d1a5f6&rfr_iscdi=true