A new hydrous iron oxide phase stable at mid-mantle pressures

•We report the discovery of new iron hydroxide (η phase) stable at the pressure-temperature conditions of the lower mantle.•The new η phase could connect the deep water transportation between ε- and pyrite-type FeOOH.•The new phase has channel that can be a new potential storage site for volatiles i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth and planetary science letters 2020-11, Vol.550 (C), p.116551, Article 116551
Hauptverfasser: Chen, Huawei, Xie, Sheng-Yi, Ko, Byeongkwan, Kim, Taehyun, Nisr, Carole, Prakapenka, Vitali, Greenberg, Eran, Zhang, Dongzhou, Bi, Wenli, Ercan, Alp E., Lee, Yongjae, Shim, Sang-Heon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 116551
container_title Earth and planetary science letters
container_volume 550
creator Chen, Huawei
Xie, Sheng-Yi
Ko, Byeongkwan
Kim, Taehyun
Nisr, Carole
Prakapenka, Vitali
Greenberg, Eran
Zhang, Dongzhou
Bi, Wenli
Ercan, Alp E.
Lee, Yongjae
Shim, Sang-Heon
description •We report the discovery of new iron hydroxide (η phase) stable at the pressure-temperature conditions of the lower mantle.•The new η phase could connect the deep water transportation between ε- and pyrite-type FeOOH.•The new phase has channel that can be a new potential storage site for volatiles in the deep mantle. The amount of hydrogen stored in the Earth's interior is important for a range of issues, including the volatile incorporation during the Earth formation and the co-evolution of the atmosphere, the hydrosphere, and the interior. Recent experiments found titanium bearing ε-FeOOH in a hydrous basaltic system at 12–19 GPa and 1300 K. Pyrite-type FeOOH was found to be stable at pressures higher than 80 GPa. These discoveries suggest possible hydrogen storage in the mantle transition zone and in the mantle below 1800 km depths, respectively. However, it remains uncertain how the potential deep hydrogen storage can be connected to the shallower storage. Here, we report a new hydrous iron oxide (η-Fe12O18+x/2Hx, x≈2) stable at pressures between the stability fields of the ε- and the pyrite-type FeOOH. Our experiment also shows that the new η phase can exist together with the major lower mantle minerals including bridgmanite and periclase, making it an important hydrogen-bearing phase in the Earth's deep interior. Because of its limited H2O storage capacity, which is less than 1/6 of the storage capacity of the pyrite-type phase and the ε phase, the stability of the η phase would result in H2O loss during water transport in the mid mantle and therefore limit the amount of H2O potentially stored in the Fe–O–H system of the lower mantle. The large channel in the crystal structure of the η phase could provide potential storage sites for other volatile elements in the deep mantle.
doi_str_mv 10.1016/j.epsl.2020.116551
format Article
fullrecord <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000569220000011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012821X20304957</els_id><sourcerecordid>S0012821X20304957</sourcerecordid><originalsourceid>FETCH-LOGICAL-a394t-d0385c7b913a2685b7d435d6cd771181ab2f0d73a5aa92007fb88b9a03f8a41b3</originalsourceid><addsrcrecordid>eNqNkM9LwzAUx4MoOKf_gKfiVTrzkrZJQQ9j-AsGXhR2C0mTsoytKUmm7r83pcOjmEPCC9_P470PQteAZ4ChutvMTB-2M4JJ-oCqLOEETYDyMsdAV6dogjGQnBNYnaOLEDYY46qs6gl6mGed-crWB-3dPmTWuy5z31abrF_LYLIQpdqaTMZsZ3W-k11MVe9NCPt0XaKzVm6DuTq-U_Tx9Pi-eMmXb8-vi_kyl7QuYq5xmqRhqgYqScVLxXRBS101mjEADlKRFmtGZSllTTBmreJc1RLTlssCFJ2im7GvC9GK0NhomnXjus40UaR1WVWwFCJjqPEuBG9a0Xu7k_4gAIvBktiIwZIYLInRUoL4CH0Z5drU2XSN-QWTpmSJpJHSAVjYKKN13cLtu5jQ2_-jKX0_pk3y9GmNF0dCWz9soZ39a84foEiQIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A new hydrous iron oxide phase stable at mid-mantle pressures</title><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><creator>Chen, Huawei ; Xie, Sheng-Yi ; Ko, Byeongkwan ; Kim, Taehyun ; Nisr, Carole ; Prakapenka, Vitali ; Greenberg, Eran ; Zhang, Dongzhou ; Bi, Wenli ; Ercan, Alp E. ; Lee, Yongjae ; Shim, Sang-Heon</creator><creatorcontrib>Chen, Huawei ; Xie, Sheng-Yi ; Ko, Byeongkwan ; Kim, Taehyun ; Nisr, Carole ; Prakapenka, Vitali ; Greenberg, Eran ; Zhang, Dongzhou ; Bi, Wenli ; Ercan, Alp E. ; Lee, Yongjae ; Shim, Sang-Heon</creatorcontrib><description>•We report the discovery of new iron hydroxide (η phase) stable at the pressure-temperature conditions of the lower mantle.•The new η phase could connect the deep water transportation between ε- and pyrite-type FeOOH.•The new phase has channel that can be a new potential storage site for volatiles in the deep mantle. The amount of hydrogen stored in the Earth's interior is important for a range of issues, including the volatile incorporation during the Earth formation and the co-evolution of the atmosphere, the hydrosphere, and the interior. Recent experiments found titanium bearing ε-FeOOH in a hydrous basaltic system at 12–19 GPa and 1300 K. Pyrite-type FeOOH was found to be stable at pressures higher than 80 GPa. These discoveries suggest possible hydrogen storage in the mantle transition zone and in the mantle below 1800 km depths, respectively. However, it remains uncertain how the potential deep hydrogen storage can be connected to the shallower storage. Here, we report a new hydrous iron oxide (η-Fe12O18+x/2Hx, x≈2) stable at pressures between the stability fields of the ε- and the pyrite-type FeOOH. Our experiment also shows that the new η phase can exist together with the major lower mantle minerals including bridgmanite and periclase, making it an important hydrogen-bearing phase in the Earth's deep interior. Because of its limited H2O storage capacity, which is less than 1/6 of the storage capacity of the pyrite-type phase and the ε phase, the stability of the η phase would result in H2O loss during water transport in the mid mantle and therefore limit the amount of H2O potentially stored in the Fe–O–H system of the lower mantle. The large channel in the crystal structure of the η phase could provide potential storage sites for other volatile elements in the deep mantle.</description><identifier>ISSN: 0012-821X</identifier><identifier>EISSN: 1385-013X</identifier><identifier>DOI: 10.1016/j.epsl.2020.116551</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier B.V</publisher><subject>crystal structure ; Geochemistry &amp; Geophysics ; hydrogen ; hydrous iron oxide ; lower mantle ; Physical Sciences ; Science &amp; Technology</subject><ispartof>Earth and planetary science letters, 2020-11, Vol.550 (C), p.116551, Article 116551</ispartof><rights>2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000569220000011</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a394t-d0385c7b913a2685b7d435d6cd771181ab2f0d73a5aa92007fb88b9a03f8a41b3</citedby><cites>FETCH-LOGICAL-a394t-d0385c7b913a2685b7d435d6cd771181ab2f0d73a5aa92007fb88b9a03f8a41b3</cites><orcidid>0000-0001-8463-6855 ; 0000-0003-1950-6258 ; 0000-0001-5203-6038 ; 0000-0003-2316-7199 ; 0000-0002-6679-892X ; 0000-0002-3541-2254 ; 0000-0002-2067-6556 ; 0000-0002-1630-0628 ; 000000026679892X ; 0000000323167199 ; 0000000319506258 ; 0000000152036038 ; 0000000184636855</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.epsl.2020.116551$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27928,27929,28252,45999</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1657647$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Huawei</creatorcontrib><creatorcontrib>Xie, Sheng-Yi</creatorcontrib><creatorcontrib>Ko, Byeongkwan</creatorcontrib><creatorcontrib>Kim, Taehyun</creatorcontrib><creatorcontrib>Nisr, Carole</creatorcontrib><creatorcontrib>Prakapenka, Vitali</creatorcontrib><creatorcontrib>Greenberg, Eran</creatorcontrib><creatorcontrib>Zhang, Dongzhou</creatorcontrib><creatorcontrib>Bi, Wenli</creatorcontrib><creatorcontrib>Ercan, Alp E.</creatorcontrib><creatorcontrib>Lee, Yongjae</creatorcontrib><creatorcontrib>Shim, Sang-Heon</creatorcontrib><title>A new hydrous iron oxide phase stable at mid-mantle pressures</title><title>Earth and planetary science letters</title><addtitle>EARTH PLANET SC LETT</addtitle><description>•We report the discovery of new iron hydroxide (η phase) stable at the pressure-temperature conditions of the lower mantle.•The new η phase could connect the deep water transportation between ε- and pyrite-type FeOOH.•The new phase has channel that can be a new potential storage site for volatiles in the deep mantle. The amount of hydrogen stored in the Earth's interior is important for a range of issues, including the volatile incorporation during the Earth formation and the co-evolution of the atmosphere, the hydrosphere, and the interior. Recent experiments found titanium bearing ε-FeOOH in a hydrous basaltic system at 12–19 GPa and 1300 K. Pyrite-type FeOOH was found to be stable at pressures higher than 80 GPa. These discoveries suggest possible hydrogen storage in the mantle transition zone and in the mantle below 1800 km depths, respectively. However, it remains uncertain how the potential deep hydrogen storage can be connected to the shallower storage. Here, we report a new hydrous iron oxide (η-Fe12O18+x/2Hx, x≈2) stable at pressures between the stability fields of the ε- and the pyrite-type FeOOH. Our experiment also shows that the new η phase can exist together with the major lower mantle minerals including bridgmanite and periclase, making it an important hydrogen-bearing phase in the Earth's deep interior. Because of its limited H2O storage capacity, which is less than 1/6 of the storage capacity of the pyrite-type phase and the ε phase, the stability of the η phase would result in H2O loss during water transport in the mid mantle and therefore limit the amount of H2O potentially stored in the Fe–O–H system of the lower mantle. The large channel in the crystal structure of the η phase could provide potential storage sites for other volatile elements in the deep mantle.</description><subject>crystal structure</subject><subject>Geochemistry &amp; Geophysics</subject><subject>hydrogen</subject><subject>hydrous iron oxide</subject><subject>lower mantle</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><issn>0012-821X</issn><issn>1385-013X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkM9LwzAUx4MoOKf_gKfiVTrzkrZJQQ9j-AsGXhR2C0mTsoytKUmm7r83pcOjmEPCC9_P470PQteAZ4ChutvMTB-2M4JJ-oCqLOEETYDyMsdAV6dogjGQnBNYnaOLEDYY46qs6gl6mGed-crWB-3dPmTWuy5z31abrF_LYLIQpdqaTMZsZ3W-k11MVe9NCPt0XaKzVm6DuTq-U_Tx9Pi-eMmXb8-vi_kyl7QuYq5xmqRhqgYqScVLxXRBS101mjEADlKRFmtGZSllTTBmreJc1RLTlssCFJ2im7GvC9GK0NhomnXjus40UaR1WVWwFCJjqPEuBG9a0Xu7k_4gAIvBktiIwZIYLInRUoL4CH0Z5drU2XSN-QWTpmSJpJHSAVjYKKN13cLtu5jQ2_-jKX0_pk3y9GmNF0dCWz9soZ39a84foEiQIQ</recordid><startdate>20201115</startdate><enddate>20201115</enddate><creator>Chen, Huawei</creator><creator>Xie, Sheng-Yi</creator><creator>Ko, Byeongkwan</creator><creator>Kim, Taehyun</creator><creator>Nisr, Carole</creator><creator>Prakapenka, Vitali</creator><creator>Greenberg, Eran</creator><creator>Zhang, Dongzhou</creator><creator>Bi, Wenli</creator><creator>Ercan, Alp E.</creator><creator>Lee, Yongjae</creator><creator>Shim, Sang-Heon</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8463-6855</orcidid><orcidid>https://orcid.org/0000-0003-1950-6258</orcidid><orcidid>https://orcid.org/0000-0001-5203-6038</orcidid><orcidid>https://orcid.org/0000-0003-2316-7199</orcidid><orcidid>https://orcid.org/0000-0002-6679-892X</orcidid><orcidid>https://orcid.org/0000-0002-3541-2254</orcidid><orcidid>https://orcid.org/0000-0002-2067-6556</orcidid><orcidid>https://orcid.org/0000-0002-1630-0628</orcidid><orcidid>https://orcid.org/000000026679892X</orcidid><orcidid>https://orcid.org/0000000323167199</orcidid><orcidid>https://orcid.org/0000000319506258</orcidid><orcidid>https://orcid.org/0000000152036038</orcidid><orcidid>https://orcid.org/0000000184636855</orcidid></search><sort><creationdate>20201115</creationdate><title>A new hydrous iron oxide phase stable at mid-mantle pressures</title><author>Chen, Huawei ; Xie, Sheng-Yi ; Ko, Byeongkwan ; Kim, Taehyun ; Nisr, Carole ; Prakapenka, Vitali ; Greenberg, Eran ; Zhang, Dongzhou ; Bi, Wenli ; Ercan, Alp E. ; Lee, Yongjae ; Shim, Sang-Heon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a394t-d0385c7b913a2685b7d435d6cd771181ab2f0d73a5aa92007fb88b9a03f8a41b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>crystal structure</topic><topic>Geochemistry &amp; Geophysics</topic><topic>hydrogen</topic><topic>hydrous iron oxide</topic><topic>lower mantle</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Huawei</creatorcontrib><creatorcontrib>Xie, Sheng-Yi</creatorcontrib><creatorcontrib>Ko, Byeongkwan</creatorcontrib><creatorcontrib>Kim, Taehyun</creatorcontrib><creatorcontrib>Nisr, Carole</creatorcontrib><creatorcontrib>Prakapenka, Vitali</creatorcontrib><creatorcontrib>Greenberg, Eran</creatorcontrib><creatorcontrib>Zhang, Dongzhou</creatorcontrib><creatorcontrib>Bi, Wenli</creatorcontrib><creatorcontrib>Ercan, Alp E.</creatorcontrib><creatorcontrib>Lee, Yongjae</creatorcontrib><creatorcontrib>Shim, Sang-Heon</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Earth and planetary science letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Huawei</au><au>Xie, Sheng-Yi</au><au>Ko, Byeongkwan</au><au>Kim, Taehyun</au><au>Nisr, Carole</au><au>Prakapenka, Vitali</au><au>Greenberg, Eran</au><au>Zhang, Dongzhou</au><au>Bi, Wenli</au><au>Ercan, Alp E.</au><au>Lee, Yongjae</au><au>Shim, Sang-Heon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new hydrous iron oxide phase stable at mid-mantle pressures</atitle><jtitle>Earth and planetary science letters</jtitle><stitle>EARTH PLANET SC LETT</stitle><date>2020-11-15</date><risdate>2020</risdate><volume>550</volume><issue>C</issue><spage>116551</spage><pages>116551-</pages><artnum>116551</artnum><issn>0012-821X</issn><eissn>1385-013X</eissn><abstract>•We report the discovery of new iron hydroxide (η phase) stable at the pressure-temperature conditions of the lower mantle.•The new η phase could connect the deep water transportation between ε- and pyrite-type FeOOH.•The new phase has channel that can be a new potential storage site for volatiles in the deep mantle. The amount of hydrogen stored in the Earth's interior is important for a range of issues, including the volatile incorporation during the Earth formation and the co-evolution of the atmosphere, the hydrosphere, and the interior. Recent experiments found titanium bearing ε-FeOOH in a hydrous basaltic system at 12–19 GPa and 1300 K. Pyrite-type FeOOH was found to be stable at pressures higher than 80 GPa. These discoveries suggest possible hydrogen storage in the mantle transition zone and in the mantle below 1800 km depths, respectively. However, it remains uncertain how the potential deep hydrogen storage can be connected to the shallower storage. Here, we report a new hydrous iron oxide (η-Fe12O18+x/2Hx, x≈2) stable at pressures between the stability fields of the ε- and the pyrite-type FeOOH. Our experiment also shows that the new η phase can exist together with the major lower mantle minerals including bridgmanite and periclase, making it an important hydrogen-bearing phase in the Earth's deep interior. Because of its limited H2O storage capacity, which is less than 1/6 of the storage capacity of the pyrite-type phase and the ε phase, the stability of the η phase would result in H2O loss during water transport in the mid mantle and therefore limit the amount of H2O potentially stored in the Fe–O–H system of the lower mantle. The large channel in the crystal structure of the η phase could provide potential storage sites for other volatile elements in the deep mantle.</abstract><cop>AMSTERDAM</cop><pub>Elsevier B.V</pub><doi>10.1016/j.epsl.2020.116551</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8463-6855</orcidid><orcidid>https://orcid.org/0000-0003-1950-6258</orcidid><orcidid>https://orcid.org/0000-0001-5203-6038</orcidid><orcidid>https://orcid.org/0000-0003-2316-7199</orcidid><orcidid>https://orcid.org/0000-0002-6679-892X</orcidid><orcidid>https://orcid.org/0000-0002-3541-2254</orcidid><orcidid>https://orcid.org/0000-0002-2067-6556</orcidid><orcidid>https://orcid.org/0000-0002-1630-0628</orcidid><orcidid>https://orcid.org/000000026679892X</orcidid><orcidid>https://orcid.org/0000000323167199</orcidid><orcidid>https://orcid.org/0000000319506258</orcidid><orcidid>https://orcid.org/0000000152036038</orcidid><orcidid>https://orcid.org/0000000184636855</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-821X
ispartof Earth and planetary science letters, 2020-11, Vol.550 (C), p.116551, Article 116551
issn 0012-821X
1385-013X
language eng
recordid cdi_webofscience_primary_000569220000011
source Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier)
subjects crystal structure
Geochemistry & Geophysics
hydrogen
hydrous iron oxide
lower mantle
Physical Sciences
Science & Technology
title A new hydrous iron oxide phase stable at mid-mantle pressures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T18%3A35%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20hydrous%20iron%20oxide%20phase%20stable%20at%20mid-mantle%20pressures&rft.jtitle=Earth%20and%20planetary%20science%20letters&rft.au=Chen,%20Huawei&rft.date=2020-11-15&rft.volume=550&rft.issue=C&rft.spage=116551&rft.pages=116551-&rft.artnum=116551&rft.issn=0012-821X&rft.eissn=1385-013X&rft_id=info:doi/10.1016/j.epsl.2020.116551&rft_dat=%3Celsevier_webof%3ES0012821X20304957%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0012821X20304957&rfr_iscdi=true