Transport of intensity equation from a single intensity image via deep learning
•Deep learning TIE is proposed.•Reducing the inputs required by TIE phase retrieval from multiple to one (simplicity).•Being free from the image boundary problem (tolerance).•Being more insensitive to noise than traditional transport of intensity equation (robustness). The transport of intensity equ...
Gespeichert in:
Veröffentlicht in: | Optics and lasers in engineering 2020-11, Vol.134, p.106233, Article 106233 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 106233 |
container_title | Optics and lasers in engineering |
container_volume | 134 |
creator | Wang, Kaiqiang Di, Jianglei Li, Ying Ren, Zhenbo Kemao, Qian Zhao, Jianlin |
description | •Deep learning TIE is proposed.•Reducing the inputs required by TIE phase retrieval from multiple to one (simplicity).•Being free from the image boundary problem (tolerance).•Being more insensitive to noise than traditional transport of intensity equation (robustness).
The transport of intensity equation (TIE) is an ideal candidate for phase imaging with partially coherent illuminations. TIE has the advantages of simplicity in phase calculation due to its closed-form solution and no requirement for a reference beam and phase unwrapping due to its non-interferometric nature. However, TIE requires multiple through-focus intensity images, and is very sensitive to image boundaries and noise. Thus, in this paper, we combine deep learning with TIE, abbreviated as dTIE. After being trained by TIE phase results, the dTIE retains the advantages of TIE, and overcomes the shortcomings of TIE as follows: (i) only one de-focus intensity image is required for phase imaging while the result is very close to the TIE result with SSIM index reaches 0.95, enabling more efficient phase imaging; (ii) the boundary problem automatically disappears due to the translation invariance of the convolutional networks; (iii) it is insensitive to noise even with very heavy noise. All these enhancements are verified in the application of dTIE for phase imaging of real cells. |
doi_str_mv | 10.1016/j.optlaseng.2020.106233 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000567570200039CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0143816620300853</els_id><sourcerecordid>S0143816620300853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-c00383c726984ffdd3f8f886742e47ac8e449670f08e56c31c4b5c6f8421e0203</originalsourceid><addsrcrecordid>eNqNkE1rAjEQhkNpofbjNzT3sjbZxGw8ivQLBC_2HGJ2IpE12SbR4r9vrCK9taeB4X2Gdx6EHigZUkLF03oY-tzpBH41rEl92IqasQs0oLJhFWGkvkQDQjmrJBXiGt2ktCaF5JQO0HwRtU99iBkHi53P4JPLewyfW51d8NjGsMEaJ-dXHfwKuI1eAd45jVuAHnegoy-ZO3RldZfg_jRv0cfL82L6Vs3mr-_TyawyTNJcGUKYZKapxVhya9uWWWmlFA2vgTfaSOB8LBpiiYSRMIwavhwZYSWvKZQn2S1qjndNDClFsKqPpVLcK0rUwYtaq7MXdfCijl4K-Xgkv2AZbDIOvIEzTQgZiWbUFKBUHJe0_H966vKPtGnY-lzQyRGF4mHnIKoT3roIJqs2uD_LfgOh9pF5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transport of intensity equation from a single intensity image via deep learning</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Wang, Kaiqiang ; Di, Jianglei ; Li, Ying ; Ren, Zhenbo ; Kemao, Qian ; Zhao, Jianlin</creator><creatorcontrib>Wang, Kaiqiang ; Di, Jianglei ; Li, Ying ; Ren, Zhenbo ; Kemao, Qian ; Zhao, Jianlin</creatorcontrib><description>•Deep learning TIE is proposed.•Reducing the inputs required by TIE phase retrieval from multiple to one (simplicity).•Being free from the image boundary problem (tolerance).•Being more insensitive to noise than traditional transport of intensity equation (robustness).
The transport of intensity equation (TIE) is an ideal candidate for phase imaging with partially coherent illuminations. TIE has the advantages of simplicity in phase calculation due to its closed-form solution and no requirement for a reference beam and phase unwrapping due to its non-interferometric nature. However, TIE requires multiple through-focus intensity images, and is very sensitive to image boundaries and noise. Thus, in this paper, we combine deep learning with TIE, abbreviated as dTIE. After being trained by TIE phase results, the dTIE retains the advantages of TIE, and overcomes the shortcomings of TIE as follows: (i) only one de-focus intensity image is required for phase imaging while the result is very close to the TIE result with SSIM index reaches 0.95, enabling more efficient phase imaging; (ii) the boundary problem automatically disappears due to the translation invariance of the convolutional networks; (iii) it is insensitive to noise even with very heavy noise. All these enhancements are verified in the application of dTIE for phase imaging of real cells.</description><identifier>ISSN: 0143-8166</identifier><identifier>EISSN: 1873-0302</identifier><identifier>DOI: 10.1016/j.optlaseng.2020.106233</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Deep learning ; Neural networks ; Optics ; Phase measurement ; Phase retrieval ; Physical Sciences ; Science & Technology</subject><ispartof>Optics and lasers in engineering, 2020-11, Vol.134, p.106233, Article 106233</ispartof><rights>2020 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>41</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000567570200039</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c381t-c00383c726984ffdd3f8f886742e47ac8e449670f08e56c31c4b5c6f8421e0203</citedby><cites>FETCH-LOGICAL-c381t-c00383c726984ffdd3f8f886742e47ac8e449670f08e56c31c4b5c6f8421e0203</cites><orcidid>0000-0001-7651-6554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.optlaseng.2020.106233$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Wang, Kaiqiang</creatorcontrib><creatorcontrib>Di, Jianglei</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Ren, Zhenbo</creatorcontrib><creatorcontrib>Kemao, Qian</creatorcontrib><creatorcontrib>Zhao, Jianlin</creatorcontrib><title>Transport of intensity equation from a single intensity image via deep learning</title><title>Optics and lasers in engineering</title><addtitle>OPT LASER ENG</addtitle><description>•Deep learning TIE is proposed.•Reducing the inputs required by TIE phase retrieval from multiple to one (simplicity).•Being free from the image boundary problem (tolerance).•Being more insensitive to noise than traditional transport of intensity equation (robustness).
The transport of intensity equation (TIE) is an ideal candidate for phase imaging with partially coherent illuminations. TIE has the advantages of simplicity in phase calculation due to its closed-form solution and no requirement for a reference beam and phase unwrapping due to its non-interferometric nature. However, TIE requires multiple through-focus intensity images, and is very sensitive to image boundaries and noise. Thus, in this paper, we combine deep learning with TIE, abbreviated as dTIE. After being trained by TIE phase results, the dTIE retains the advantages of TIE, and overcomes the shortcomings of TIE as follows: (i) only one de-focus intensity image is required for phase imaging while the result is very close to the TIE result with SSIM index reaches 0.95, enabling more efficient phase imaging; (ii) the boundary problem automatically disappears due to the translation invariance of the convolutional networks; (iii) it is insensitive to noise even with very heavy noise. All these enhancements are verified in the application of dTIE for phase imaging of real cells.</description><subject>Deep learning</subject><subject>Neural networks</subject><subject>Optics</subject><subject>Phase measurement</subject><subject>Phase retrieval</subject><subject>Physical Sciences</subject><subject>Science & Technology</subject><issn>0143-8166</issn><issn>1873-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkE1rAjEQhkNpofbjNzT3sjbZxGw8ivQLBC_2HGJ2IpE12SbR4r9vrCK9taeB4X2Gdx6EHigZUkLF03oY-tzpBH41rEl92IqasQs0oLJhFWGkvkQDQjmrJBXiGt2ktCaF5JQO0HwRtU99iBkHi53P4JPLewyfW51d8NjGsMEaJ-dXHfwKuI1eAd45jVuAHnegoy-ZO3RldZfg_jRv0cfL82L6Vs3mr-_TyawyTNJcGUKYZKapxVhya9uWWWmlFA2vgTfaSOB8LBpiiYSRMIwavhwZYSWvKZQn2S1qjndNDClFsKqPpVLcK0rUwYtaq7MXdfCijl4K-Xgkv2AZbDIOvIEzTQgZiWbUFKBUHJe0_H966vKPtGnY-lzQyRGF4mHnIKoT3roIJqs2uD_LfgOh9pF5</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Wang, Kaiqiang</creator><creator>Di, Jianglei</creator><creator>Li, Ying</creator><creator>Ren, Zhenbo</creator><creator>Kemao, Qian</creator><creator>Zhao, Jianlin</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7651-6554</orcidid></search><sort><creationdate>202011</creationdate><title>Transport of intensity equation from a single intensity image via deep learning</title><author>Wang, Kaiqiang ; Di, Jianglei ; Li, Ying ; Ren, Zhenbo ; Kemao, Qian ; Zhao, Jianlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-c00383c726984ffdd3f8f886742e47ac8e449670f08e56c31c4b5c6f8421e0203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Deep learning</topic><topic>Neural networks</topic><topic>Optics</topic><topic>Phase measurement</topic><topic>Phase retrieval</topic><topic>Physical Sciences</topic><topic>Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kaiqiang</creatorcontrib><creatorcontrib>Di, Jianglei</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Ren, Zhenbo</creatorcontrib><creatorcontrib>Kemao, Qian</creatorcontrib><creatorcontrib>Zhao, Jianlin</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Optics and lasers in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kaiqiang</au><au>Di, Jianglei</au><au>Li, Ying</au><au>Ren, Zhenbo</au><au>Kemao, Qian</au><au>Zhao, Jianlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport of intensity equation from a single intensity image via deep learning</atitle><jtitle>Optics and lasers in engineering</jtitle><stitle>OPT LASER ENG</stitle><date>2020-11</date><risdate>2020</risdate><volume>134</volume><spage>106233</spage><pages>106233-</pages><artnum>106233</artnum><issn>0143-8166</issn><eissn>1873-0302</eissn><abstract>•Deep learning TIE is proposed.•Reducing the inputs required by TIE phase retrieval from multiple to one (simplicity).•Being free from the image boundary problem (tolerance).•Being more insensitive to noise than traditional transport of intensity equation (robustness).
The transport of intensity equation (TIE) is an ideal candidate for phase imaging with partially coherent illuminations. TIE has the advantages of simplicity in phase calculation due to its closed-form solution and no requirement for a reference beam and phase unwrapping due to its non-interferometric nature. However, TIE requires multiple through-focus intensity images, and is very sensitive to image boundaries and noise. Thus, in this paper, we combine deep learning with TIE, abbreviated as dTIE. After being trained by TIE phase results, the dTIE retains the advantages of TIE, and overcomes the shortcomings of TIE as follows: (i) only one de-focus intensity image is required for phase imaging while the result is very close to the TIE result with SSIM index reaches 0.95, enabling more efficient phase imaging; (ii) the boundary problem automatically disappears due to the translation invariance of the convolutional networks; (iii) it is insensitive to noise even with very heavy noise. All these enhancements are verified in the application of dTIE for phase imaging of real cells.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.optlaseng.2020.106233</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7651-6554</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-8166 |
ispartof | Optics and lasers in engineering, 2020-11, Vol.134, p.106233, Article 106233 |
issn | 0143-8166 1873-0302 |
language | eng |
recordid | cdi_webofscience_primary_000567570200039CitationCount |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Deep learning Neural networks Optics Phase measurement Phase retrieval Physical Sciences Science & Technology |
title | Transport of intensity equation from a single intensity image via deep learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A10%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20of%20intensity%20equation%20from%20a%20single%20intensity%20image%20via%20deep%20learning&rft.jtitle=Optics%20and%20lasers%20in%20engineering&rft.au=Wang,%20Kaiqiang&rft.date=2020-11&rft.volume=134&rft.spage=106233&rft.pages=106233-&rft.artnum=106233&rft.issn=0143-8166&rft.eissn=1873-0302&rft_id=info:doi/10.1016/j.optlaseng.2020.106233&rft_dat=%3Celsevier_webof%3ES0143816620300853%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0143816620300853&rfr_iscdi=true |