Transport of intensity equation from a single intensity image via deep learning

•Deep learning TIE is proposed.•Reducing the inputs required by TIE phase retrieval from multiple to one (simplicity).•Being free from the image boundary problem (tolerance).•Being more insensitive to noise than traditional transport of intensity equation (robustness). The transport of intensity equ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics and lasers in engineering 2020-11, Vol.134, p.106233, Article 106233
Hauptverfasser: Wang, Kaiqiang, Di, Jianglei, Li, Ying, Ren, Zhenbo, Kemao, Qian, Zhao, Jianlin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106233
container_title Optics and lasers in engineering
container_volume 134
creator Wang, Kaiqiang
Di, Jianglei
Li, Ying
Ren, Zhenbo
Kemao, Qian
Zhao, Jianlin
description •Deep learning TIE is proposed.•Reducing the inputs required by TIE phase retrieval from multiple to one (simplicity).•Being free from the image boundary problem (tolerance).•Being more insensitive to noise than traditional transport of intensity equation (robustness). The transport of intensity equation (TIE) is an ideal candidate for phase imaging with partially coherent illuminations. TIE has the advantages of simplicity in phase calculation due to its closed-form solution and no requirement for a reference beam and phase unwrapping due to its non-interferometric nature. However, TIE requires multiple through-focus intensity images, and is very sensitive to image boundaries and noise. Thus, in this paper, we combine deep learning with TIE, abbreviated as dTIE. After being trained by TIE phase results, the dTIE retains the advantages of TIE, and overcomes the shortcomings of TIE as follows: (i) only one de-focus intensity image is required for phase imaging while the result is very close to the TIE result with SSIM index reaches 0.95, enabling more efficient phase imaging; (ii) the boundary problem automatically disappears due to the translation invariance of the convolutional networks; (iii) it is insensitive to noise even with very heavy noise. All these enhancements are verified in the application of dTIE for phase imaging of real cells.
doi_str_mv 10.1016/j.optlaseng.2020.106233
format Article
fullrecord <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000567570200039CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0143816620300853</els_id><sourcerecordid>S0143816620300853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-c00383c726984ffdd3f8f886742e47ac8e449670f08e56c31c4b5c6f8421e0203</originalsourceid><addsrcrecordid>eNqNkE1rAjEQhkNpofbjNzT3sjbZxGw8ivQLBC_2HGJ2IpE12SbR4r9vrCK9taeB4X2Gdx6EHigZUkLF03oY-tzpBH41rEl92IqasQs0oLJhFWGkvkQDQjmrJBXiGt2ktCaF5JQO0HwRtU99iBkHi53P4JPLewyfW51d8NjGsMEaJ-dXHfwKuI1eAd45jVuAHnegoy-ZO3RldZfg_jRv0cfL82L6Vs3mr-_TyawyTNJcGUKYZKapxVhya9uWWWmlFA2vgTfaSOB8LBpiiYSRMIwavhwZYSWvKZQn2S1qjndNDClFsKqPpVLcK0rUwYtaq7MXdfCijl4K-Xgkv2AZbDIOvIEzTQgZiWbUFKBUHJe0_H966vKPtGnY-lzQyRGF4mHnIKoT3roIJqs2uD_LfgOh9pF5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transport of intensity equation from a single intensity image via deep learning</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Wang, Kaiqiang ; Di, Jianglei ; Li, Ying ; Ren, Zhenbo ; Kemao, Qian ; Zhao, Jianlin</creator><creatorcontrib>Wang, Kaiqiang ; Di, Jianglei ; Li, Ying ; Ren, Zhenbo ; Kemao, Qian ; Zhao, Jianlin</creatorcontrib><description>•Deep learning TIE is proposed.•Reducing the inputs required by TIE phase retrieval from multiple to one (simplicity).•Being free from the image boundary problem (tolerance).•Being more insensitive to noise than traditional transport of intensity equation (robustness). The transport of intensity equation (TIE) is an ideal candidate for phase imaging with partially coherent illuminations. TIE has the advantages of simplicity in phase calculation due to its closed-form solution and no requirement for a reference beam and phase unwrapping due to its non-interferometric nature. However, TIE requires multiple through-focus intensity images, and is very sensitive to image boundaries and noise. Thus, in this paper, we combine deep learning with TIE, abbreviated as dTIE. After being trained by TIE phase results, the dTIE retains the advantages of TIE, and overcomes the shortcomings of TIE as follows: (i) only one de-focus intensity image is required for phase imaging while the result is very close to the TIE result with SSIM index reaches 0.95, enabling more efficient phase imaging; (ii) the boundary problem automatically disappears due to the translation invariance of the convolutional networks; (iii) it is insensitive to noise even with very heavy noise. All these enhancements are verified in the application of dTIE for phase imaging of real cells.</description><identifier>ISSN: 0143-8166</identifier><identifier>EISSN: 1873-0302</identifier><identifier>DOI: 10.1016/j.optlaseng.2020.106233</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Deep learning ; Neural networks ; Optics ; Phase measurement ; Phase retrieval ; Physical Sciences ; Science &amp; Technology</subject><ispartof>Optics and lasers in engineering, 2020-11, Vol.134, p.106233, Article 106233</ispartof><rights>2020 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>41</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000567570200039</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c381t-c00383c726984ffdd3f8f886742e47ac8e449670f08e56c31c4b5c6f8421e0203</citedby><cites>FETCH-LOGICAL-c381t-c00383c726984ffdd3f8f886742e47ac8e449670f08e56c31c4b5c6f8421e0203</cites><orcidid>0000-0001-7651-6554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.optlaseng.2020.106233$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Wang, Kaiqiang</creatorcontrib><creatorcontrib>Di, Jianglei</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Ren, Zhenbo</creatorcontrib><creatorcontrib>Kemao, Qian</creatorcontrib><creatorcontrib>Zhao, Jianlin</creatorcontrib><title>Transport of intensity equation from a single intensity image via deep learning</title><title>Optics and lasers in engineering</title><addtitle>OPT LASER ENG</addtitle><description>•Deep learning TIE is proposed.•Reducing the inputs required by TIE phase retrieval from multiple to one (simplicity).•Being free from the image boundary problem (tolerance).•Being more insensitive to noise than traditional transport of intensity equation (robustness). The transport of intensity equation (TIE) is an ideal candidate for phase imaging with partially coherent illuminations. TIE has the advantages of simplicity in phase calculation due to its closed-form solution and no requirement for a reference beam and phase unwrapping due to its non-interferometric nature. However, TIE requires multiple through-focus intensity images, and is very sensitive to image boundaries and noise. Thus, in this paper, we combine deep learning with TIE, abbreviated as dTIE. After being trained by TIE phase results, the dTIE retains the advantages of TIE, and overcomes the shortcomings of TIE as follows: (i) only one de-focus intensity image is required for phase imaging while the result is very close to the TIE result with SSIM index reaches 0.95, enabling more efficient phase imaging; (ii) the boundary problem automatically disappears due to the translation invariance of the convolutional networks; (iii) it is insensitive to noise even with very heavy noise. All these enhancements are verified in the application of dTIE for phase imaging of real cells.</description><subject>Deep learning</subject><subject>Neural networks</subject><subject>Optics</subject><subject>Phase measurement</subject><subject>Phase retrieval</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><issn>0143-8166</issn><issn>1873-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkE1rAjEQhkNpofbjNzT3sjbZxGw8ivQLBC_2HGJ2IpE12SbR4r9vrCK9taeB4X2Gdx6EHigZUkLF03oY-tzpBH41rEl92IqasQs0oLJhFWGkvkQDQjmrJBXiGt2ktCaF5JQO0HwRtU99iBkHi53P4JPLewyfW51d8NjGsMEaJ-dXHfwKuI1eAd45jVuAHnegoy-ZO3RldZfg_jRv0cfL82L6Vs3mr-_TyawyTNJcGUKYZKapxVhya9uWWWmlFA2vgTfaSOB8LBpiiYSRMIwavhwZYSWvKZQn2S1qjndNDClFsKqPpVLcK0rUwYtaq7MXdfCijl4K-Xgkv2AZbDIOvIEzTQgZiWbUFKBUHJe0_H966vKPtGnY-lzQyRGF4mHnIKoT3roIJqs2uD_LfgOh9pF5</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Wang, Kaiqiang</creator><creator>Di, Jianglei</creator><creator>Li, Ying</creator><creator>Ren, Zhenbo</creator><creator>Kemao, Qian</creator><creator>Zhao, Jianlin</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7651-6554</orcidid></search><sort><creationdate>202011</creationdate><title>Transport of intensity equation from a single intensity image via deep learning</title><author>Wang, Kaiqiang ; Di, Jianglei ; Li, Ying ; Ren, Zhenbo ; Kemao, Qian ; Zhao, Jianlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-c00383c726984ffdd3f8f886742e47ac8e449670f08e56c31c4b5c6f8421e0203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Deep learning</topic><topic>Neural networks</topic><topic>Optics</topic><topic>Phase measurement</topic><topic>Phase retrieval</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kaiqiang</creatorcontrib><creatorcontrib>Di, Jianglei</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Ren, Zhenbo</creatorcontrib><creatorcontrib>Kemao, Qian</creatorcontrib><creatorcontrib>Zhao, Jianlin</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Optics and lasers in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kaiqiang</au><au>Di, Jianglei</au><au>Li, Ying</au><au>Ren, Zhenbo</au><au>Kemao, Qian</au><au>Zhao, Jianlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport of intensity equation from a single intensity image via deep learning</atitle><jtitle>Optics and lasers in engineering</jtitle><stitle>OPT LASER ENG</stitle><date>2020-11</date><risdate>2020</risdate><volume>134</volume><spage>106233</spage><pages>106233-</pages><artnum>106233</artnum><issn>0143-8166</issn><eissn>1873-0302</eissn><abstract>•Deep learning TIE is proposed.•Reducing the inputs required by TIE phase retrieval from multiple to one (simplicity).•Being free from the image boundary problem (tolerance).•Being more insensitive to noise than traditional transport of intensity equation (robustness). The transport of intensity equation (TIE) is an ideal candidate for phase imaging with partially coherent illuminations. TIE has the advantages of simplicity in phase calculation due to its closed-form solution and no requirement for a reference beam and phase unwrapping due to its non-interferometric nature. However, TIE requires multiple through-focus intensity images, and is very sensitive to image boundaries and noise. Thus, in this paper, we combine deep learning with TIE, abbreviated as dTIE. After being trained by TIE phase results, the dTIE retains the advantages of TIE, and overcomes the shortcomings of TIE as follows: (i) only one de-focus intensity image is required for phase imaging while the result is very close to the TIE result with SSIM index reaches 0.95, enabling more efficient phase imaging; (ii) the boundary problem automatically disappears due to the translation invariance of the convolutional networks; (iii) it is insensitive to noise even with very heavy noise. All these enhancements are verified in the application of dTIE for phase imaging of real cells.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.optlaseng.2020.106233</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7651-6554</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0143-8166
ispartof Optics and lasers in engineering, 2020-11, Vol.134, p.106233, Article 106233
issn 0143-8166
1873-0302
language eng
recordid cdi_webofscience_primary_000567570200039CitationCount
source ScienceDirect Journals (5 years ago - present)
subjects Deep learning
Neural networks
Optics
Phase measurement
Phase retrieval
Physical Sciences
Science & Technology
title Transport of intensity equation from a single intensity image via deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A10%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20of%20intensity%20equation%20from%20a%20single%20intensity%20image%20via%20deep%20learning&rft.jtitle=Optics%20and%20lasers%20in%20engineering&rft.au=Wang,%20Kaiqiang&rft.date=2020-11&rft.volume=134&rft.spage=106233&rft.pages=106233-&rft.artnum=106233&rft.issn=0143-8166&rft.eissn=1873-0302&rft_id=info:doi/10.1016/j.optlaseng.2020.106233&rft_dat=%3Celsevier_webof%3ES0143816620300853%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0143816620300853&rfr_iscdi=true