Exploring Vinyl Polymers as Soft Carbon Precursors for M-Ion (M = Na, Li) Batteries and Hybrid Capacitors

The viability of the sodium-ion batteries as a post-lithium storage technology is strongly tied to the development of high-performance carbonaceous anode materials. This requires screening novel precursors, and tuning their electrochemical properties. Soft carbons as promising anode materials, not o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2020-08, Vol.13 (16), p.4189
Hauptverfasser: Pendashteh, Afshin, Orayech, Brahim, Ajuria, Jon, Jáuregui, María, Saurel, Damien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The viability of the sodium-ion batteries as a post-lithium storage technology is strongly tied to the development of high-performance carbonaceous anode materials. This requires screening novel precursors, and tuning their electrochemical properties. Soft carbons as promising anode materials, not only for batteries, but also in hybrid capacitors, have drawn great attention, due to safe operation voltage and high-power properties. Herein, several vinyl polymer-derived soft carbons have been prepared via pyrolysis, and their physicochemical and sodium storage properties have been evaluated. According to the obtained results, vinyl polymers are a promising source for preparation of soft carbon anode materials for sodium-ion battery application. In addition, their applicability towards Li-ion battery and hybrid capacitors (e.g., Li ion capacitors, LICs) has been examined. This work not only contrasts the carbonization products of these polymers with relevant physicochemical characterization, but also screens potential precursors for soft carbons with interesting alkali metal-ion (e.g., Na or Li, with an emphasis on Na) storage properties. This can stimulate further research to tune and improve the electrochemical properties of the soft carbons for energy storage applications.
ISSN:1996-1073
1996-1073
DOI:10.3390/en13164189