How the distribution of relaxation times enhances complex equivalent circuit models for fuel cells
Distribution of relaxation times (DRT) is a well-established method for deconvoluting electrochemical impedance spectroscopy (EIS) data from fuel cells. DRT-analysis provides a deeper insight into electrode reactions and supports identification of the most accurate equivalent circuit models. This es...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2020-09, Vol.355, p.136764, Article 136764 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 136764 |
container_title | Electrochimica acta |
container_volume | 355 |
creator | Dierickx, Sebastian Weber, André Ivers-Tiffée, Ellen |
description | Distribution of relaxation times (DRT) is a well-established method for deconvoluting electrochemical impedance spectroscopy (EIS) data from fuel cells. DRT-analysis provides a deeper insight into electrode reactions and supports identification of the most accurate equivalent circuit models. This established method has undergone much change in recent decades and has been applied to many sub-fields. Contemporary studies are highly specialized and produce specialist literature: to further a comprehensive view, this paper provides an overview and retrospective. EIS measurement and subsequent interpretation by DRT are challenging because (i) high-performance electrodes have very low impedances (10–100 mΩ), (ii) the concept of one rate-limiting step is usually not applicable, and (iii) the charge transfer and transport processes in anode and cathode are often coupled; overlapping in the frequency domain. In this paper selected results from advanced EIS and DRT analyses are discussed. We demonstrate the importance of EIS data quality, introduce the use of the Kramers-Kronig transformation, explain the impacts of statistically distributed noise and single errors in EIS spectra, and the selection of the regularization parameter lambda for improved interpretation of DRT curves. Finally, well-selected examples of DRT approaches lead to adequate models with different complexity. As a result, this paper deepens the understanding of how to assess electrochemical measurements of fuel cells based on the DRT. It, therefore, represents a vital guide for DRT analysis.
[Display omitted] |
doi_str_mv | 10.1016/j.electacta.2020.136764 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000566959300007CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468620311579</els_id><sourcerecordid>2448940899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-ddf768a60638ca92cc115749abfab7069d23303481db391d249a00ae722e0ea53</originalsourceid><addsrcrecordid>eNqNkF1rHCEUhqU00G3S31Chl2U2x3HGj8uwtE0hkJv2Whw9Q1xmx406Sfrv62ZCbhMQ1OP7eA4PIV8ZbBkwcbnf4oSu2Lq2LbS1yoUU3QeyYUryhqtefyQbAMabTijxiXzOeQ8AUkjYkOE6PtJyh9SHXFIYlhLiTONIE072yT7fSjhgpjjf2dnVg4uH44RPFO-X8GAnnAt1IbklFHqIHqdMx5jouOBEHU5TviBno50yfnnZz8nfnz_-7K6bm9tfv3dXN43relUa70cplBUguHJWt84x1stO22G0gwShfcs58E4xP3DNfFufACzKtkVA2_Nz8m3995ji_YK5mH1c0lxbmrbrlO5AaV1Tck25FHNOOJpjCgeb_hkG5iTU7M2rUHMSalahlVQr-YhDHLMLWHW80tVoL4TuNYeT3F0oz_J2cZlLRb-_H63pqzVdXeJDwGReCB9SHcz4GN4c9j_zTaTh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448940899</pqid></control><display><type>article</type><title>How the distribution of relaxation times enhances complex equivalent circuit models for fuel cells</title><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Access via ScienceDirect (Elsevier)</source><creator>Dierickx, Sebastian ; Weber, André ; Ivers-Tiffée, Ellen</creator><creatorcontrib>Dierickx, Sebastian ; Weber, André ; Ivers-Tiffée, Ellen</creatorcontrib><description>Distribution of relaxation times (DRT) is a well-established method for deconvoluting electrochemical impedance spectroscopy (EIS) data from fuel cells. DRT-analysis provides a deeper insight into electrode reactions and supports identification of the most accurate equivalent circuit models. This established method has undergone much change in recent decades and has been applied to many sub-fields. Contemporary studies are highly specialized and produce specialist literature: to further a comprehensive view, this paper provides an overview and retrospective. EIS measurement and subsequent interpretation by DRT are challenging because (i) high-performance electrodes have very low impedances (10–100 mΩ), (ii) the concept of one rate-limiting step is usually not applicable, and (iii) the charge transfer and transport processes in anode and cathode are often coupled; overlapping in the frequency domain. In this paper selected results from advanced EIS and DRT analyses are discussed. We demonstrate the importance of EIS data quality, introduce the use of the Kramers-Kronig transformation, explain the impacts of statistically distributed noise and single errors in EIS spectra, and the selection of the regularization parameter lambda for improved interpretation of DRT curves. Finally, well-selected examples of DRT approaches lead to adequate models with different complexity. As a result, this paper deepens the understanding of how to assess electrochemical measurements of fuel cells based on the DRT. It, therefore, represents a vital guide for DRT analysis.
[Display omitted]</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2020.136764</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Charge transfer ; Complexity ; Distribution of relaxation times ; Electrochemical impedance spectroscopy ; Electrochemistry ; Electrodes ; Equivalent circuit modelling ; Equivalent circuits ; Fuel cells ; PEMFC ; Physical Sciences ; Regularization ; Science & Technology ; SOFC ; Spectrum analysis</subject><ispartof>Electrochimica acta, 2020-09, Vol.355, p.136764, Article 136764</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 20, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>149</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000566959300007</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c458t-ddf768a60638ca92cc115749abfab7069d23303481db391d249a00ae722e0ea53</citedby><cites>FETCH-LOGICAL-c458t-ddf768a60638ca92cc115749abfab7069d23303481db391d249a00ae722e0ea53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2020.136764$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,28253,46000</link.rule.ids></links><search><creatorcontrib>Dierickx, Sebastian</creatorcontrib><creatorcontrib>Weber, André</creatorcontrib><creatorcontrib>Ivers-Tiffée, Ellen</creatorcontrib><title>How the distribution of relaxation times enhances complex equivalent circuit models for fuel cells</title><title>Electrochimica acta</title><addtitle>ELECTROCHIM ACTA</addtitle><description>Distribution of relaxation times (DRT) is a well-established method for deconvoluting electrochemical impedance spectroscopy (EIS) data from fuel cells. DRT-analysis provides a deeper insight into electrode reactions and supports identification of the most accurate equivalent circuit models. This established method has undergone much change in recent decades and has been applied to many sub-fields. Contemporary studies are highly specialized and produce specialist literature: to further a comprehensive view, this paper provides an overview and retrospective. EIS measurement and subsequent interpretation by DRT are challenging because (i) high-performance electrodes have very low impedances (10–100 mΩ), (ii) the concept of one rate-limiting step is usually not applicable, and (iii) the charge transfer and transport processes in anode and cathode are often coupled; overlapping in the frequency domain. In this paper selected results from advanced EIS and DRT analyses are discussed. We demonstrate the importance of EIS data quality, introduce the use of the Kramers-Kronig transformation, explain the impacts of statistically distributed noise and single errors in EIS spectra, and the selection of the regularization parameter lambda for improved interpretation of DRT curves. Finally, well-selected examples of DRT approaches lead to adequate models with different complexity. As a result, this paper deepens the understanding of how to assess electrochemical measurements of fuel cells based on the DRT. It, therefore, represents a vital guide for DRT analysis.
[Display omitted]</description><subject>Charge transfer</subject><subject>Complexity</subject><subject>Distribution of relaxation times</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Equivalent circuit modelling</subject><subject>Equivalent circuits</subject><subject>Fuel cells</subject><subject>PEMFC</subject><subject>Physical Sciences</subject><subject>Regularization</subject><subject>Science & Technology</subject><subject>SOFC</subject><subject>Spectrum analysis</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkF1rHCEUhqU00G3S31Chl2U2x3HGj8uwtE0hkJv2Whw9Q1xmx406Sfrv62ZCbhMQ1OP7eA4PIV8ZbBkwcbnf4oSu2Lq2LbS1yoUU3QeyYUryhqtefyQbAMabTijxiXzOeQ8AUkjYkOE6PtJyh9SHXFIYlhLiTONIE072yT7fSjhgpjjf2dnVg4uH44RPFO-X8GAnnAt1IbklFHqIHqdMx5jouOBEHU5TviBno50yfnnZz8nfnz_-7K6bm9tfv3dXN43relUa70cplBUguHJWt84x1stO22G0gwShfcs58E4xP3DNfFufACzKtkVA2_Nz8m3995ji_YK5mH1c0lxbmrbrlO5AaV1Tck25FHNOOJpjCgeb_hkG5iTU7M2rUHMSalahlVQr-YhDHLMLWHW80tVoL4TuNYeT3F0oz_J2cZlLRb-_H63pqzVdXeJDwGReCB9SHcz4GN4c9j_zTaTh</recordid><startdate>20200920</startdate><enddate>20200920</enddate><creator>Dierickx, Sebastian</creator><creator>Weber, André</creator><creator>Ivers-Tiffée, Ellen</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier BV</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20200920</creationdate><title>How the distribution of relaxation times enhances complex equivalent circuit models for fuel cells</title><author>Dierickx, Sebastian ; Weber, André ; Ivers-Tiffée, Ellen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-ddf768a60638ca92cc115749abfab7069d23303481db391d249a00ae722e0ea53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Charge transfer</topic><topic>Complexity</topic><topic>Distribution of relaxation times</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Equivalent circuit modelling</topic><topic>Equivalent circuits</topic><topic>Fuel cells</topic><topic>PEMFC</topic><topic>Physical Sciences</topic><topic>Regularization</topic><topic>Science & Technology</topic><topic>SOFC</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dierickx, Sebastian</creatorcontrib><creatorcontrib>Weber, André</creatorcontrib><creatorcontrib>Ivers-Tiffée, Ellen</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dierickx, Sebastian</au><au>Weber, André</au><au>Ivers-Tiffée, Ellen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How the distribution of relaxation times enhances complex equivalent circuit models for fuel cells</atitle><jtitle>Electrochimica acta</jtitle><stitle>ELECTROCHIM ACTA</stitle><date>2020-09-20</date><risdate>2020</risdate><volume>355</volume><spage>136764</spage><pages>136764-</pages><artnum>136764</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Distribution of relaxation times (DRT) is a well-established method for deconvoluting electrochemical impedance spectroscopy (EIS) data from fuel cells. DRT-analysis provides a deeper insight into electrode reactions and supports identification of the most accurate equivalent circuit models. This established method has undergone much change in recent decades and has been applied to many sub-fields. Contemporary studies are highly specialized and produce specialist literature: to further a comprehensive view, this paper provides an overview and retrospective. EIS measurement and subsequent interpretation by DRT are challenging because (i) high-performance electrodes have very low impedances (10–100 mΩ), (ii) the concept of one rate-limiting step is usually not applicable, and (iii) the charge transfer and transport processes in anode and cathode are often coupled; overlapping in the frequency domain. In this paper selected results from advanced EIS and DRT analyses are discussed. We demonstrate the importance of EIS data quality, introduce the use of the Kramers-Kronig transformation, explain the impacts of statistically distributed noise and single errors in EIS spectra, and the selection of the regularization parameter lambda for improved interpretation of DRT curves. Finally, well-selected examples of DRT approaches lead to adequate models with different complexity. As a result, this paper deepens the understanding of how to assess electrochemical measurements of fuel cells based on the DRT. It, therefore, represents a vital guide for DRT analysis.
[Display omitted]</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2020.136764</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2020-09, Vol.355, p.136764, Article 136764 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_webofscience_primary_000566959300007CitationCount |
source | Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier) |
subjects | Charge transfer Complexity Distribution of relaxation times Electrochemical impedance spectroscopy Electrochemistry Electrodes Equivalent circuit modelling Equivalent circuits Fuel cells PEMFC Physical Sciences Regularization Science & Technology SOFC Spectrum analysis |
title | How the distribution of relaxation times enhances complex equivalent circuit models for fuel cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A59%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20the%20distribution%20of%20relaxation%20times%20enhances%20complex%20equivalent%20circuit%20models%20for%20fuel%20cells&rft.jtitle=Electrochimica%20acta&rft.au=Dierickx,%20Sebastian&rft.date=2020-09-20&rft.volume=355&rft.spage=136764&rft.pages=136764-&rft.artnum=136764&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2020.136764&rft_dat=%3Cproquest_webof%3E2448940899%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448940899&rft_id=info:pmid/&rft_els_id=S0013468620311579&rfr_iscdi=true |