Silencing of CCR4-NOT complex subunits affects heart structure and function
The identification of genetic variants that predispose individuals to cardiovascular disease and a better understanding of their targets would be highly advantageous. Genome-wide association studies have identified variants that associate with QT-interval length (a measure of myocardial repolarizati...
Gespeichert in:
Veröffentlicht in: | Disease models & mechanisms 2020-07, Vol.13 (7), Article 044727 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Disease models & mechanisms |
container_volume | 13 |
creator | Elmen, Lisa Volpato, Claudia B. Kervadec, Anais Pineda, Santiago Kalvakuri, Sreehari Alyari, Nakissa N. Foco, Luisa Pramstaller, Peter P. Ocorr, Karen Rossini, Alessandra Cammarato, Anthony Colas, Alexandre R. Hicks, Andrew A. Bodmer, Rolf |
description | The identification of genetic variants that predispose individuals to cardiovascular disease and a better understanding of their targets would be highly advantageous. Genome-wide association studies have identified variants that associate with QT-interval length (a measure of myocardial repolarization). Three of the strongest associating variants (single-nucleotide polymorphisms) are located in the putative promotor region of CNOT1, a gene encoding the central CNOT1 subunit of CCR4-NOT: a multifunctional, conserved complex regulating gene expression and mRNA stability and turnover. We isolated the minimum fragment of the CNOT1 promoter containing all three variants from individuals homozygous for the QT risk alleles and demonstrated that the haplotype associating with longer QT interval caused reduced reporter expression in a cardiac cell line, suggesting that reduced CNOT1 expression might contribute to abnormal QT intervals. Systematic siRNA-mediated knockdown of CCR4-NOT components in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) revealed that silencing CNOT1 and other CCR4-NOT genes reduced their proliferativ e capacity. Silencing CNOT7 also shortened action potential duration. Furthermore, the cardiac-specific knockdown of Drosophila orthologs of CCR4-NOT genes in vivo (CNOT1/Not1 and CNOT7/8/Pop2) was either lethal or resulted in dilated cardiomyopathy, reduced contractility or a propensity for arrhythmia. Silencing CNOT2/Not2, CNOT4/Not4 and CNOT6/6L/twin also affected cardiac chamber size and contractility. Developmental studies suggested that CNOT1/Not1 and CNOT7/8/Pop2 are required during cardiac remodeling from larval to adult stages. To summarize, we hav e demonstrated how disease-associated genes identified by GWAS can be investigated by combining human cardiomyocyte cell-based and whole-organism in vivo hear t models. Our results also suggest a potential link of CNOT1 and CNOT7/8 to QT alterations and further establish a crucial role of the CCR4-NOT complex in heart development and function.
This article has an associated First Person interview with the first author of the paper. |
doi_str_mv | 10.1242/dmm.044727 |
format | Article |
fullrecord | <record><control><sourceid>webofscience</sourceid><recordid>TN_cdi_webofscience_primary_000566935500005CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>000566935500005</sourcerecordid><originalsourceid>FETCH-webofscience_primary_0005669355000053</originalsourceid><addsrcrecordid>eNqVjclKQzEUQC-i2MFu_ILs5bU3wxu6DopQqKDdlzRNbOS9pGRA_XtbENd2dc7iwAG4pzinTLDFfhjmKETL2isY07YWVScovf5z5COYpPSB2LCOL29hxJloadeIMazeXG-8dv6dBEukfBXV-mVDdBiOvfkiqeyKdzkRZa3RJx6MipmkHIvOJRqi_J7Y4nV2wd_BjVV9MrNfTuHh6XEjn6tPsws2aXcame0xukHF7y0i1k2z5HWNZ-VT6P5fS5fVeSlD8ZlfNvoBV_Va-A</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Silencing of CCR4-NOT complex subunits affects heart structure and function</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Elmen, Lisa ; Volpato, Claudia B. ; Kervadec, Anais ; Pineda, Santiago ; Kalvakuri, Sreehari ; Alyari, Nakissa N. ; Foco, Luisa ; Pramstaller, Peter P. ; Ocorr, Karen ; Rossini, Alessandra ; Cammarato, Anthony ; Colas, Alexandre R. ; Hicks, Andrew A. ; Bodmer, Rolf</creator><creatorcontrib>Elmen, Lisa ; Volpato, Claudia B. ; Kervadec, Anais ; Pineda, Santiago ; Kalvakuri, Sreehari ; Alyari, Nakissa N. ; Foco, Luisa ; Pramstaller, Peter P. ; Ocorr, Karen ; Rossini, Alessandra ; Cammarato, Anthony ; Colas, Alexandre R. ; Hicks, Andrew A. ; Bodmer, Rolf</creatorcontrib><description>The identification of genetic variants that predispose individuals to cardiovascular disease and a better understanding of their targets would be highly advantageous. Genome-wide association studies have identified variants that associate with QT-interval length (a measure of myocardial repolarization). Three of the strongest associating variants (single-nucleotide polymorphisms) are located in the putative promotor region of CNOT1, a gene encoding the central CNOT1 subunit of CCR4-NOT: a multifunctional, conserved complex regulating gene expression and mRNA stability and turnover. We isolated the minimum fragment of the CNOT1 promoter containing all three variants from individuals homozygous for the QT risk alleles and demonstrated that the haplotype associating with longer QT interval caused reduced reporter expression in a cardiac cell line, suggesting that reduced CNOT1 expression might contribute to abnormal QT intervals. Systematic siRNA-mediated knockdown of CCR4-NOT components in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) revealed that silencing CNOT1 and other CCR4-NOT genes reduced their proliferativ e capacity. Silencing CNOT7 also shortened action potential duration. Furthermore, the cardiac-specific knockdown of Drosophila orthologs of CCR4-NOT genes in vivo (CNOT1/Not1 and CNOT7/8/Pop2) was either lethal or resulted in dilated cardiomyopathy, reduced contractility or a propensity for arrhythmia. Silencing CNOT2/Not2, CNOT4/Not4 and CNOT6/6L/twin also affected cardiac chamber size and contractility. Developmental studies suggested that CNOT1/Not1 and CNOT7/8/Pop2 are required during cardiac remodeling from larval to adult stages. To summarize, we hav e demonstrated how disease-associated genes identified by GWAS can be investigated by combining human cardiomyocyte cell-based and whole-organism in vivo hear t models. Our results also suggest a potential link of CNOT1 and CNOT7/8 to QT alterations and further establish a crucial role of the CCR4-NOT complex in heart development and function.
This article has an associated First Person interview with the first author of the paper.</description><identifier>ISSN: 1754-8403</identifier><identifier>EISSN: 1754-8411</identifier><identifier>DOI: 10.1242/dmm.044727</identifier><identifier>PMID: 32471864</identifier><identifier>PMID: 34005014</identifier><language>eng</language><publisher>CAMBRIDGE: Company Biologists Ltd</publisher><subject>Cell Biology ; Life Sciences & Biomedicine ; Pathology ; Science & Technology</subject><ispartof>Disease models & mechanisms, 2020-07, Vol.13 (7), Article 044727</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>17</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000566935500005</woscitedreferencesoriginalsourcerecordid><cites>FETCH-webofscience_primary_0005669355000053</cites><orcidid>0000-0001-8105-6871 ; 0000-0002-0440-1130 ; 0000-0003-3495-3697 ; 0000-0001-9087-1210 ; 0000-0002-9831-8302 ; 0000-0002-6694-3322 ; 0000-0001-6320-0411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,2110,27911,27912</link.rule.ids></links><search><creatorcontrib>Elmen, Lisa</creatorcontrib><creatorcontrib>Volpato, Claudia B.</creatorcontrib><creatorcontrib>Kervadec, Anais</creatorcontrib><creatorcontrib>Pineda, Santiago</creatorcontrib><creatorcontrib>Kalvakuri, Sreehari</creatorcontrib><creatorcontrib>Alyari, Nakissa N.</creatorcontrib><creatorcontrib>Foco, Luisa</creatorcontrib><creatorcontrib>Pramstaller, Peter P.</creatorcontrib><creatorcontrib>Ocorr, Karen</creatorcontrib><creatorcontrib>Rossini, Alessandra</creatorcontrib><creatorcontrib>Cammarato, Anthony</creatorcontrib><creatorcontrib>Colas, Alexandre R.</creatorcontrib><creatorcontrib>Hicks, Andrew A.</creatorcontrib><creatorcontrib>Bodmer, Rolf</creatorcontrib><title>Silencing of CCR4-NOT complex subunits affects heart structure and function</title><title>Disease models & mechanisms</title><addtitle>DIS MODEL MECH</addtitle><description>The identification of genetic variants that predispose individuals to cardiovascular disease and a better understanding of their targets would be highly advantageous. Genome-wide association studies have identified variants that associate with QT-interval length (a measure of myocardial repolarization). Three of the strongest associating variants (single-nucleotide polymorphisms) are located in the putative promotor region of CNOT1, a gene encoding the central CNOT1 subunit of CCR4-NOT: a multifunctional, conserved complex regulating gene expression and mRNA stability and turnover. We isolated the minimum fragment of the CNOT1 promoter containing all three variants from individuals homozygous for the QT risk alleles and demonstrated that the haplotype associating with longer QT interval caused reduced reporter expression in a cardiac cell line, suggesting that reduced CNOT1 expression might contribute to abnormal QT intervals. Systematic siRNA-mediated knockdown of CCR4-NOT components in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) revealed that silencing CNOT1 and other CCR4-NOT genes reduced their proliferativ e capacity. Silencing CNOT7 also shortened action potential duration. Furthermore, the cardiac-specific knockdown of Drosophila orthologs of CCR4-NOT genes in vivo (CNOT1/Not1 and CNOT7/8/Pop2) was either lethal or resulted in dilated cardiomyopathy, reduced contractility or a propensity for arrhythmia. Silencing CNOT2/Not2, CNOT4/Not4 and CNOT6/6L/twin also affected cardiac chamber size and contractility. Developmental studies suggested that CNOT1/Not1 and CNOT7/8/Pop2 are required during cardiac remodeling from larval to adult stages. To summarize, we hav e demonstrated how disease-associated genes identified by GWAS can be investigated by combining human cardiomyocyte cell-based and whole-organism in vivo hear t models. Our results also suggest a potential link of CNOT1 and CNOT7/8 to QT alterations and further establish a crucial role of the CCR4-NOT complex in heart development and function.
This article has an associated First Person interview with the first author of the paper.</description><subject>Cell Biology</subject><subject>Life Sciences & Biomedicine</subject><subject>Pathology</subject><subject>Science & Technology</subject><issn>1754-8403</issn><issn>1754-8411</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqVjclKQzEUQC-i2MFu_ILs5bU3wxu6DopQqKDdlzRNbOS9pGRA_XtbENd2dc7iwAG4pzinTLDFfhjmKETL2isY07YWVScovf5z5COYpPSB2LCOL29hxJloadeIMazeXG-8dv6dBEukfBXV-mVDdBiOvfkiqeyKdzkRZa3RJx6MipmkHIvOJRqi_J7Y4nV2wd_BjVV9MrNfTuHh6XEjn6tPsws2aXcame0xukHF7y0i1k2z5HWNZ-VT6P5fS5fVeSlD8ZlfNvoBV_Va-A</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Elmen, Lisa</creator><creator>Volpato, Claudia B.</creator><creator>Kervadec, Anais</creator><creator>Pineda, Santiago</creator><creator>Kalvakuri, Sreehari</creator><creator>Alyari, Nakissa N.</creator><creator>Foco, Luisa</creator><creator>Pramstaller, Peter P.</creator><creator>Ocorr, Karen</creator><creator>Rossini, Alessandra</creator><creator>Cammarato, Anthony</creator><creator>Colas, Alexandre R.</creator><creator>Hicks, Andrew A.</creator><creator>Bodmer, Rolf</creator><general>Company Biologists Ltd</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><orcidid>https://orcid.org/0000-0001-8105-6871</orcidid><orcidid>https://orcid.org/0000-0002-0440-1130</orcidid><orcidid>https://orcid.org/0000-0003-3495-3697</orcidid><orcidid>https://orcid.org/0000-0001-9087-1210</orcidid><orcidid>https://orcid.org/0000-0002-9831-8302</orcidid><orcidid>https://orcid.org/0000-0002-6694-3322</orcidid><orcidid>https://orcid.org/0000-0001-6320-0411</orcidid></search><sort><creationdate>20200701</creationdate><title>Silencing of CCR4-NOT complex subunits affects heart structure and function</title><author>Elmen, Lisa ; Volpato, Claudia B. ; Kervadec, Anais ; Pineda, Santiago ; Kalvakuri, Sreehari ; Alyari, Nakissa N. ; Foco, Luisa ; Pramstaller, Peter P. ; Ocorr, Karen ; Rossini, Alessandra ; Cammarato, Anthony ; Colas, Alexandre R. ; Hicks, Andrew A. ; Bodmer, Rolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-webofscience_primary_0005669355000053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cell Biology</topic><topic>Life Sciences & Biomedicine</topic><topic>Pathology</topic><topic>Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elmen, Lisa</creatorcontrib><creatorcontrib>Volpato, Claudia B.</creatorcontrib><creatorcontrib>Kervadec, Anais</creatorcontrib><creatorcontrib>Pineda, Santiago</creatorcontrib><creatorcontrib>Kalvakuri, Sreehari</creatorcontrib><creatorcontrib>Alyari, Nakissa N.</creatorcontrib><creatorcontrib>Foco, Luisa</creatorcontrib><creatorcontrib>Pramstaller, Peter P.</creatorcontrib><creatorcontrib>Ocorr, Karen</creatorcontrib><creatorcontrib>Rossini, Alessandra</creatorcontrib><creatorcontrib>Cammarato, Anthony</creatorcontrib><creatorcontrib>Colas, Alexandre R.</creatorcontrib><creatorcontrib>Hicks, Andrew A.</creatorcontrib><creatorcontrib>Bodmer, Rolf</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><jtitle>Disease models & mechanisms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elmen, Lisa</au><au>Volpato, Claudia B.</au><au>Kervadec, Anais</au><au>Pineda, Santiago</au><au>Kalvakuri, Sreehari</au><au>Alyari, Nakissa N.</au><au>Foco, Luisa</au><au>Pramstaller, Peter P.</au><au>Ocorr, Karen</au><au>Rossini, Alessandra</au><au>Cammarato, Anthony</au><au>Colas, Alexandre R.</au><au>Hicks, Andrew A.</au><au>Bodmer, Rolf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silencing of CCR4-NOT complex subunits affects heart structure and function</atitle><jtitle>Disease models & mechanisms</jtitle><stitle>DIS MODEL MECH</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>13</volume><issue>7</issue><artnum>044727</artnum><issn>1754-8403</issn><eissn>1754-8411</eissn><abstract>The identification of genetic variants that predispose individuals to cardiovascular disease and a better understanding of their targets would be highly advantageous. Genome-wide association studies have identified variants that associate with QT-interval length (a measure of myocardial repolarization). Three of the strongest associating variants (single-nucleotide polymorphisms) are located in the putative promotor region of CNOT1, a gene encoding the central CNOT1 subunit of CCR4-NOT: a multifunctional, conserved complex regulating gene expression and mRNA stability and turnover. We isolated the minimum fragment of the CNOT1 promoter containing all three variants from individuals homozygous for the QT risk alleles and demonstrated that the haplotype associating with longer QT interval caused reduced reporter expression in a cardiac cell line, suggesting that reduced CNOT1 expression might contribute to abnormal QT intervals. Systematic siRNA-mediated knockdown of CCR4-NOT components in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) revealed that silencing CNOT1 and other CCR4-NOT genes reduced their proliferativ e capacity. Silencing CNOT7 also shortened action potential duration. Furthermore, the cardiac-specific knockdown of Drosophila orthologs of CCR4-NOT genes in vivo (CNOT1/Not1 and CNOT7/8/Pop2) was either lethal or resulted in dilated cardiomyopathy, reduced contractility or a propensity for arrhythmia. Silencing CNOT2/Not2, CNOT4/Not4 and CNOT6/6L/twin also affected cardiac chamber size and contractility. Developmental studies suggested that CNOT1/Not1 and CNOT7/8/Pop2 are required during cardiac remodeling from larval to adult stages. To summarize, we hav e demonstrated how disease-associated genes identified by GWAS can be investigated by combining human cardiomyocyte cell-based and whole-organism in vivo hear t models. Our results also suggest a potential link of CNOT1 and CNOT7/8 to QT alterations and further establish a crucial role of the CCR4-NOT complex in heart development and function.
This article has an associated First Person interview with the first author of the paper.</abstract><cop>CAMBRIDGE</cop><pub>Company Biologists Ltd</pub><pmid>32471864</pmid><pmid>34005014</pmid><doi>10.1242/dmm.044727</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8105-6871</orcidid><orcidid>https://orcid.org/0000-0002-0440-1130</orcidid><orcidid>https://orcid.org/0000-0003-3495-3697</orcidid><orcidid>https://orcid.org/0000-0001-9087-1210</orcidid><orcidid>https://orcid.org/0000-0002-9831-8302</orcidid><orcidid>https://orcid.org/0000-0002-6694-3322</orcidid><orcidid>https://orcid.org/0000-0001-6320-0411</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-8403 |
ispartof | Disease models & mechanisms, 2020-07, Vol.13 (7), Article 044727 |
issn | 1754-8403 1754-8411 |
language | eng |
recordid | cdi_webofscience_primary_000566935500005CitationCount |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Cell Biology Life Sciences & Biomedicine Pathology Science & Technology |
title | Silencing of CCR4-NOT complex subunits affects heart structure and function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A59%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-webofscience&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silencing%20of%20CCR4-NOT%20complex%20subunits%20affects%20heart%20structure%20and%20function&rft.jtitle=Disease%20models%20&%20mechanisms&rft.au=Elmen,%20Lisa&rft.date=2020-07-01&rft.volume=13&rft.issue=7&rft.artnum=044727&rft.issn=1754-8403&rft.eissn=1754-8411&rft_id=info:doi/10.1242/dmm.044727&rft_dat=%3Cwebofscience%3E000566935500005%3C/webofscience%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32471864&rfr_iscdi=true |