Molecular Motions in AIEgen Crystals: Turning on Photoluminescence by Force-Induced Filament Sliding

Life process is amazing, and it proceeds against the eternal law of entropy increase through molecular motion and takes energy from the environment to build high-order complexity from chaos to achieve evolution with more sophisticated architectures. Inspired from the elegance of life process and als...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2020-08, Vol.142 (34), p.14608-14618
Hauptverfasser: Zhang, Jing, He, Benzhao, Wu, Wenjie, Alam, Parvej, Zhang, Han, Gong, Junyi, Song, Fengyan, Wang, Zaiyu, Sung, Herman H. Y, Williams, Ian D, Wang, Zhiming, Lam, Jacky W. Y, Tang, Ben Zhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14618
container_issue 34
container_start_page 14608
container_title Journal of the American Chemical Society
container_volume 142
creator Zhang, Jing
He, Benzhao
Wu, Wenjie
Alam, Parvej
Zhang, Han
Gong, Junyi
Song, Fengyan
Wang, Zaiyu
Sung, Herman H. Y
Williams, Ian D
Wang, Zhiming
Lam, Jacky W. Y
Tang, Ben Zhong
description Life process is amazing, and it proceeds against the eternal law of entropy increase through molecular motion and takes energy from the environment to build high-order complexity from chaos to achieve evolution with more sophisticated architectures. Inspired from the elegance of life process and also to effectively exploit the undeveloped solid-state molecular motion, two unique chiral Au­(I) complexes were elaborately developed in this study, in which their powders could realize a dramatic transformation from nonemissive isolated crystallites to emissive well-defined microcrystals under the stimulation of mechanical force. Such an unusual crystallization was presumed to be caused by molecular motions driven by the formation of strong aurophilic interactions as well as multiple C–H···F and π–π interactions. Such a prominent macroscopic off/on luminescent switching could also be achieved through extremely subtle molecular motions in the crystal state and presented a filament sliding that occurred in a layer-by-layer molecular stacking fashion with no involvement of any crystal phase transition. Additionally, it had been demonstrated that the manipulation of the solid-state molecular motions could result in the generation of circularly polarized luminescence.
doi_str_mv 10.1021/jacs.0c06305
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000566667700024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434058445</sourcerecordid><originalsourceid>FETCH-LOGICAL-a390t-203fa5228472097ab1a0e610c4335dfd380b13fe243f84e79d6bef145d4817ed3</originalsourceid><addsrcrecordid>eNqNkc9rFDEYhoModlu9eZYcBTttfk6y3srQrQstFaznIZN8U7PMJDWZQfa_b4Zd68WDuYTA8718eV6EPlByQQmjlztj8wWxpOZEvkIrKhmpJGX1a7QihLBK6ZqfoNOcd-UpmKZv0QlnSitWixVyd3EAOw8m4bs4-Rgy9gFfba8fIeAm7fNkhvwFP8wp-PCIY8DffsYpDvPoA2QLwQLu9ngTk4VqG9xsweGNH8wIYcLfB-_K2Dv0pi8x8P54n6Efm-uH5mt1e3-zba5uK8PXZKoY4b2RjGmhGFkr01FDoKbECs6l6x3XpKO8ByZ4rwWotas76KmQTmiqwPEz9OmQ-5Tirxny1I6-7DgMJkCcc1sGBZFaCFnQ8wNqU8w5Qd8-JT-atG8paRev7eK1PXot-Mdj8tyN4F7gPyIL8PkA_IYu9tn6xcwLVszLuhyllkoWWv8_3fjJLM00cQ7T3z8u6-1i6aUY_ffSzz20oUY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434058445</pqid></control><display><type>article</type><title>Molecular Motions in AIEgen Crystals: Turning on Photoluminescence by Force-Induced Filament Sliding</title><source>ACS Publications</source><source>MEDLINE</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Zhang, Jing ; He, Benzhao ; Wu, Wenjie ; Alam, Parvej ; Zhang, Han ; Gong, Junyi ; Song, Fengyan ; Wang, Zaiyu ; Sung, Herman H. Y ; Williams, Ian D ; Wang, Zhiming ; Lam, Jacky W. Y ; Tang, Ben Zhong</creator><creatorcontrib>Zhang, Jing ; He, Benzhao ; Wu, Wenjie ; Alam, Parvej ; Zhang, Han ; Gong, Junyi ; Song, Fengyan ; Wang, Zaiyu ; Sung, Herman H. Y ; Williams, Ian D ; Wang, Zhiming ; Lam, Jacky W. Y ; Tang, Ben Zhong</creatorcontrib><description>Life process is amazing, and it proceeds against the eternal law of entropy increase through molecular motion and takes energy from the environment to build high-order complexity from chaos to achieve evolution with more sophisticated architectures. Inspired from the elegance of life process and also to effectively exploit the undeveloped solid-state molecular motion, two unique chiral Au­(I) complexes were elaborately developed in this study, in which their powders could realize a dramatic transformation from nonemissive isolated crystallites to emissive well-defined microcrystals under the stimulation of mechanical force. Such an unusual crystallization was presumed to be caused by molecular motions driven by the formation of strong aurophilic interactions as well as multiple C–H···F and π–π interactions. Such a prominent macroscopic off/on luminescent switching could also be achieved through extremely subtle molecular motions in the crystal state and presented a filament sliding that occurred in a layer-by-layer molecular stacking fashion with no involvement of any crystal phase transition. Additionally, it had been demonstrated that the manipulation of the solid-state molecular motions could result in the generation of circularly polarized luminescence.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.0c06305</identifier><identifier>PMID: 32787264</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Chemistry ; Chemistry, Multidisciplinary ; Crystallization ; Luminescence ; Molecular Structure ; Motion ; Organogold Compounds - chemistry ; Particle Size ; Phase Transition ; Photochemical Processes ; Physical Sciences ; Science &amp; Technology ; Surface Properties</subject><ispartof>Journal of the American Chemical Society, 2020-08, Vol.142 (34), p.14608-14618</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>62</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000566667700024</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a390t-203fa5228472097ab1a0e610c4335dfd380b13fe243f84e79d6bef145d4817ed3</citedby><cites>FETCH-LOGICAL-a390t-203fa5228472097ab1a0e610c4335dfd380b13fe243f84e79d6bef145d4817ed3</cites><orcidid>0000-0003-4069-1769 ; 0000-0001-5626-5399 ; 0000-0001-7592-7132 ; 0000-0002-3047-3285 ; 0000-0002-1735-4943 ; 0000-0002-0293-964X ; 0000-0001-6534-4953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.0c06305$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.0c06305$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2769,27085,27933,27934,28257,56747,56797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32787264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>He, Benzhao</creatorcontrib><creatorcontrib>Wu, Wenjie</creatorcontrib><creatorcontrib>Alam, Parvej</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Gong, Junyi</creatorcontrib><creatorcontrib>Song, Fengyan</creatorcontrib><creatorcontrib>Wang, Zaiyu</creatorcontrib><creatorcontrib>Sung, Herman H. Y</creatorcontrib><creatorcontrib>Williams, Ian D</creatorcontrib><creatorcontrib>Wang, Zhiming</creatorcontrib><creatorcontrib>Lam, Jacky W. Y</creatorcontrib><creatorcontrib>Tang, Ben Zhong</creatorcontrib><title>Molecular Motions in AIEgen Crystals: Turning on Photoluminescence by Force-Induced Filament Sliding</title><title>Journal of the American Chemical Society</title><addtitle>J AM CHEM SOC</addtitle><addtitle>J. Am. Chem. Soc</addtitle><description>Life process is amazing, and it proceeds against the eternal law of entropy increase through molecular motion and takes energy from the environment to build high-order complexity from chaos to achieve evolution with more sophisticated architectures. Inspired from the elegance of life process and also to effectively exploit the undeveloped solid-state molecular motion, two unique chiral Au­(I) complexes were elaborately developed in this study, in which their powders could realize a dramatic transformation from nonemissive isolated crystallites to emissive well-defined microcrystals under the stimulation of mechanical force. Such an unusual crystallization was presumed to be caused by molecular motions driven by the formation of strong aurophilic interactions as well as multiple C–H···F and π–π interactions. Such a prominent macroscopic off/on luminescent switching could also be achieved through extremely subtle molecular motions in the crystal state and presented a filament sliding that occurred in a layer-by-layer molecular stacking fashion with no involvement of any crystal phase transition. Additionally, it had been demonstrated that the manipulation of the solid-state molecular motions could result in the generation of circularly polarized luminescence.</description><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Crystallization</subject><subject>Luminescence</subject><subject>Molecular Structure</subject><subject>Motion</subject><subject>Organogold Compounds - chemistry</subject><subject>Particle Size</subject><subject>Phase Transition</subject><subject>Photochemical Processes</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>Surface Properties</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc9rFDEYhoModlu9eZYcBTttfk6y3srQrQstFaznIZN8U7PMJDWZQfa_b4Zd68WDuYTA8718eV6EPlByQQmjlztj8wWxpOZEvkIrKhmpJGX1a7QihLBK6ZqfoNOcd-UpmKZv0QlnSitWixVyd3EAOw8m4bs4-Rgy9gFfba8fIeAm7fNkhvwFP8wp-PCIY8DffsYpDvPoA2QLwQLu9ngTk4VqG9xsweGNH8wIYcLfB-_K2Dv0pi8x8P54n6Efm-uH5mt1e3-zba5uK8PXZKoY4b2RjGmhGFkr01FDoKbECs6l6x3XpKO8ByZ4rwWotas76KmQTmiqwPEz9OmQ-5Tirxny1I6-7DgMJkCcc1sGBZFaCFnQ8wNqU8w5Qd8-JT-atG8paRev7eK1PXot-Mdj8tyN4F7gPyIL8PkA_IYu9tn6xcwLVszLuhyllkoWWv8_3fjJLM00cQ7T3z8u6-1i6aUY_ffSzz20oUY</recordid><startdate>20200826</startdate><enddate>20200826</enddate><creator>Zhang, Jing</creator><creator>He, Benzhao</creator><creator>Wu, Wenjie</creator><creator>Alam, Parvej</creator><creator>Zhang, Han</creator><creator>Gong, Junyi</creator><creator>Song, Fengyan</creator><creator>Wang, Zaiyu</creator><creator>Sung, Herman H. Y</creator><creator>Williams, Ian D</creator><creator>Wang, Zhiming</creator><creator>Lam, Jacky W. Y</creator><creator>Tang, Ben Zhong</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4069-1769</orcidid><orcidid>https://orcid.org/0000-0001-5626-5399</orcidid><orcidid>https://orcid.org/0000-0001-7592-7132</orcidid><orcidid>https://orcid.org/0000-0002-3047-3285</orcidid><orcidid>https://orcid.org/0000-0002-1735-4943</orcidid><orcidid>https://orcid.org/0000-0002-0293-964X</orcidid><orcidid>https://orcid.org/0000-0001-6534-4953</orcidid></search><sort><creationdate>20200826</creationdate><title>Molecular Motions in AIEgen Crystals: Turning on Photoluminescence by Force-Induced Filament Sliding</title><author>Zhang, Jing ; He, Benzhao ; Wu, Wenjie ; Alam, Parvej ; Zhang, Han ; Gong, Junyi ; Song, Fengyan ; Wang, Zaiyu ; Sung, Herman H. Y ; Williams, Ian D ; Wang, Zhiming ; Lam, Jacky W. Y ; Tang, Ben Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a390t-203fa5228472097ab1a0e610c4335dfd380b13fe243f84e79d6bef145d4817ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Crystallization</topic><topic>Luminescence</topic><topic>Molecular Structure</topic><topic>Motion</topic><topic>Organogold Compounds - chemistry</topic><topic>Particle Size</topic><topic>Phase Transition</topic><topic>Photochemical Processes</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>He, Benzhao</creatorcontrib><creatorcontrib>Wu, Wenjie</creatorcontrib><creatorcontrib>Alam, Parvej</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Gong, Junyi</creatorcontrib><creatorcontrib>Song, Fengyan</creatorcontrib><creatorcontrib>Wang, Zaiyu</creatorcontrib><creatorcontrib>Sung, Herman H. Y</creatorcontrib><creatorcontrib>Williams, Ian D</creatorcontrib><creatorcontrib>Wang, Zhiming</creatorcontrib><creatorcontrib>Lam, Jacky W. Y</creatorcontrib><creatorcontrib>Tang, Ben Zhong</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jing</au><au>He, Benzhao</au><au>Wu, Wenjie</au><au>Alam, Parvej</au><au>Zhang, Han</au><au>Gong, Junyi</au><au>Song, Fengyan</au><au>Wang, Zaiyu</au><au>Sung, Herman H. Y</au><au>Williams, Ian D</au><au>Wang, Zhiming</au><au>Lam, Jacky W. Y</au><au>Tang, Ben Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Motions in AIEgen Crystals: Turning on Photoluminescence by Force-Induced Filament Sliding</atitle><jtitle>Journal of the American Chemical Society</jtitle><stitle>J AM CHEM SOC</stitle><addtitle>J. Am. Chem. Soc</addtitle><date>2020-08-26</date><risdate>2020</risdate><volume>142</volume><issue>34</issue><spage>14608</spage><epage>14618</epage><pages>14608-14618</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Life process is amazing, and it proceeds against the eternal law of entropy increase through molecular motion and takes energy from the environment to build high-order complexity from chaos to achieve evolution with more sophisticated architectures. Inspired from the elegance of life process and also to effectively exploit the undeveloped solid-state molecular motion, two unique chiral Au­(I) complexes were elaborately developed in this study, in which their powders could realize a dramatic transformation from nonemissive isolated crystallites to emissive well-defined microcrystals under the stimulation of mechanical force. Such an unusual crystallization was presumed to be caused by molecular motions driven by the formation of strong aurophilic interactions as well as multiple C–H···F and π–π interactions. Such a prominent macroscopic off/on luminescent switching could also be achieved through extremely subtle molecular motions in the crystal state and presented a filament sliding that occurred in a layer-by-layer molecular stacking fashion with no involvement of any crystal phase transition. Additionally, it had been demonstrated that the manipulation of the solid-state molecular motions could result in the generation of circularly polarized luminescence.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>32787264</pmid><doi>10.1021/jacs.0c06305</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4069-1769</orcidid><orcidid>https://orcid.org/0000-0001-5626-5399</orcidid><orcidid>https://orcid.org/0000-0001-7592-7132</orcidid><orcidid>https://orcid.org/0000-0002-3047-3285</orcidid><orcidid>https://orcid.org/0000-0002-1735-4943</orcidid><orcidid>https://orcid.org/0000-0002-0293-964X</orcidid><orcidid>https://orcid.org/0000-0001-6534-4953</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2020-08, Vol.142 (34), p.14608-14618
issn 0002-7863
1520-5126
language eng
recordid cdi_webofscience_primary_000566667700024
source ACS Publications; MEDLINE; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Chemistry
Chemistry, Multidisciplinary
Crystallization
Luminescence
Molecular Structure
Motion
Organogold Compounds - chemistry
Particle Size
Phase Transition
Photochemical Processes
Physical Sciences
Science & Technology
Surface Properties
title Molecular Motions in AIEgen Crystals: Turning on Photoluminescence by Force-Induced Filament Sliding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T05%3A44%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Motions%20in%20AIEgen%20Crystals:%20Turning%20on%20Photoluminescence%20by%20Force-Induced%20Filament%20Sliding&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Zhang,%20Jing&rft.date=2020-08-26&rft.volume=142&rft.issue=34&rft.spage=14608&rft.epage=14618&rft.pages=14608-14618&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.0c06305&rft_dat=%3Cproquest_webof%3E2434058445%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434058445&rft_id=info:pmid/32787264&rfr_iscdi=true