Molecular Motions in AIEgen Crystals: Turning on Photoluminescence by Force-Induced Filament Sliding
Life process is amazing, and it proceeds against the eternal law of entropy increase through molecular motion and takes energy from the environment to build high-order complexity from chaos to achieve evolution with more sophisticated architectures. Inspired from the elegance of life process and als...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2020-08, Vol.142 (34), p.14608-14618 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14618 |
---|---|
container_issue | 34 |
container_start_page | 14608 |
container_title | Journal of the American Chemical Society |
container_volume | 142 |
creator | Zhang, Jing He, Benzhao Wu, Wenjie Alam, Parvej Zhang, Han Gong, Junyi Song, Fengyan Wang, Zaiyu Sung, Herman H. Y Williams, Ian D Wang, Zhiming Lam, Jacky W. Y Tang, Ben Zhong |
description | Life process is amazing, and it proceeds against the eternal law of entropy increase through molecular motion and takes energy from the environment to build high-order complexity from chaos to achieve evolution with more sophisticated architectures. Inspired from the elegance of life process and also to effectively exploit the undeveloped solid-state molecular motion, two unique chiral Au(I) complexes were elaborately developed in this study, in which their powders could realize a dramatic transformation from nonemissive isolated crystallites to emissive well-defined microcrystals under the stimulation of mechanical force. Such an unusual crystallization was presumed to be caused by molecular motions driven by the formation of strong aurophilic interactions as well as multiple C–H···F and π–π interactions. Such a prominent macroscopic off/on luminescent switching could also be achieved through extremely subtle molecular motions in the crystal state and presented a filament sliding that occurred in a layer-by-layer molecular stacking fashion with no involvement of any crystal phase transition. Additionally, it had been demonstrated that the manipulation of the solid-state molecular motions could result in the generation of circularly polarized luminescence. |
doi_str_mv | 10.1021/jacs.0c06305 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000566667700024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434058445</sourcerecordid><originalsourceid>FETCH-LOGICAL-a390t-203fa5228472097ab1a0e610c4335dfd380b13fe243f84e79d6bef145d4817ed3</originalsourceid><addsrcrecordid>eNqNkc9rFDEYhoModlu9eZYcBTttfk6y3srQrQstFaznIZN8U7PMJDWZQfa_b4Zd68WDuYTA8718eV6EPlByQQmjlztj8wWxpOZEvkIrKhmpJGX1a7QihLBK6ZqfoNOcd-UpmKZv0QlnSitWixVyd3EAOw8m4bs4-Rgy9gFfba8fIeAm7fNkhvwFP8wp-PCIY8DffsYpDvPoA2QLwQLu9ngTk4VqG9xsweGNH8wIYcLfB-_K2Dv0pi8x8P54n6Efm-uH5mt1e3-zba5uK8PXZKoY4b2RjGmhGFkr01FDoKbECs6l6x3XpKO8ByZ4rwWotas76KmQTmiqwPEz9OmQ-5Tirxny1I6-7DgMJkCcc1sGBZFaCFnQ8wNqU8w5Qd8-JT-atG8paRev7eK1PXot-Mdj8tyN4F7gPyIL8PkA_IYu9tn6xcwLVszLuhyllkoWWv8_3fjJLM00cQ7T3z8u6-1i6aUY_ffSzz20oUY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434058445</pqid></control><display><type>article</type><title>Molecular Motions in AIEgen Crystals: Turning on Photoluminescence by Force-Induced Filament Sliding</title><source>ACS Publications</source><source>MEDLINE</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Zhang, Jing ; He, Benzhao ; Wu, Wenjie ; Alam, Parvej ; Zhang, Han ; Gong, Junyi ; Song, Fengyan ; Wang, Zaiyu ; Sung, Herman H. Y ; Williams, Ian D ; Wang, Zhiming ; Lam, Jacky W. Y ; Tang, Ben Zhong</creator><creatorcontrib>Zhang, Jing ; He, Benzhao ; Wu, Wenjie ; Alam, Parvej ; Zhang, Han ; Gong, Junyi ; Song, Fengyan ; Wang, Zaiyu ; Sung, Herman H. Y ; Williams, Ian D ; Wang, Zhiming ; Lam, Jacky W. Y ; Tang, Ben Zhong</creatorcontrib><description>Life process is amazing, and it proceeds against the eternal law of entropy increase through molecular motion and takes energy from the environment to build high-order complexity from chaos to achieve evolution with more sophisticated architectures. Inspired from the elegance of life process and also to effectively exploit the undeveloped solid-state molecular motion, two unique chiral Au(I) complexes were elaborately developed in this study, in which their powders could realize a dramatic transformation from nonemissive isolated crystallites to emissive well-defined microcrystals under the stimulation of mechanical force. Such an unusual crystallization was presumed to be caused by molecular motions driven by the formation of strong aurophilic interactions as well as multiple C–H···F and π–π interactions. Such a prominent macroscopic off/on luminescent switching could also be achieved through extremely subtle molecular motions in the crystal state and presented a filament sliding that occurred in a layer-by-layer molecular stacking fashion with no involvement of any crystal phase transition. Additionally, it had been demonstrated that the manipulation of the solid-state molecular motions could result in the generation of circularly polarized luminescence.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.0c06305</identifier><identifier>PMID: 32787264</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Chemistry ; Chemistry, Multidisciplinary ; Crystallization ; Luminescence ; Molecular Structure ; Motion ; Organogold Compounds - chemistry ; Particle Size ; Phase Transition ; Photochemical Processes ; Physical Sciences ; Science & Technology ; Surface Properties</subject><ispartof>Journal of the American Chemical Society, 2020-08, Vol.142 (34), p.14608-14618</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>62</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000566667700024</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a390t-203fa5228472097ab1a0e610c4335dfd380b13fe243f84e79d6bef145d4817ed3</citedby><cites>FETCH-LOGICAL-a390t-203fa5228472097ab1a0e610c4335dfd380b13fe243f84e79d6bef145d4817ed3</cites><orcidid>0000-0003-4069-1769 ; 0000-0001-5626-5399 ; 0000-0001-7592-7132 ; 0000-0002-3047-3285 ; 0000-0002-1735-4943 ; 0000-0002-0293-964X ; 0000-0001-6534-4953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.0c06305$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.0c06305$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2769,27085,27933,27934,28257,56747,56797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32787264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>He, Benzhao</creatorcontrib><creatorcontrib>Wu, Wenjie</creatorcontrib><creatorcontrib>Alam, Parvej</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Gong, Junyi</creatorcontrib><creatorcontrib>Song, Fengyan</creatorcontrib><creatorcontrib>Wang, Zaiyu</creatorcontrib><creatorcontrib>Sung, Herman H. Y</creatorcontrib><creatorcontrib>Williams, Ian D</creatorcontrib><creatorcontrib>Wang, Zhiming</creatorcontrib><creatorcontrib>Lam, Jacky W. Y</creatorcontrib><creatorcontrib>Tang, Ben Zhong</creatorcontrib><title>Molecular Motions in AIEgen Crystals: Turning on Photoluminescence by Force-Induced Filament Sliding</title><title>Journal of the American Chemical Society</title><addtitle>J AM CHEM SOC</addtitle><addtitle>J. Am. Chem. Soc</addtitle><description>Life process is amazing, and it proceeds against the eternal law of entropy increase through molecular motion and takes energy from the environment to build high-order complexity from chaos to achieve evolution with more sophisticated architectures. Inspired from the elegance of life process and also to effectively exploit the undeveloped solid-state molecular motion, two unique chiral Au(I) complexes were elaborately developed in this study, in which their powders could realize a dramatic transformation from nonemissive isolated crystallites to emissive well-defined microcrystals under the stimulation of mechanical force. Such an unusual crystallization was presumed to be caused by molecular motions driven by the formation of strong aurophilic interactions as well as multiple C–H···F and π–π interactions. Such a prominent macroscopic off/on luminescent switching could also be achieved through extremely subtle molecular motions in the crystal state and presented a filament sliding that occurred in a layer-by-layer molecular stacking fashion with no involvement of any crystal phase transition. Additionally, it had been demonstrated that the manipulation of the solid-state molecular motions could result in the generation of circularly polarized luminescence.</description><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Crystallization</subject><subject>Luminescence</subject><subject>Molecular Structure</subject><subject>Motion</subject><subject>Organogold Compounds - chemistry</subject><subject>Particle Size</subject><subject>Phase Transition</subject><subject>Photochemical Processes</subject><subject>Physical Sciences</subject><subject>Science & Technology</subject><subject>Surface Properties</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc9rFDEYhoModlu9eZYcBTttfk6y3srQrQstFaznIZN8U7PMJDWZQfa_b4Zd68WDuYTA8718eV6EPlByQQmjlztj8wWxpOZEvkIrKhmpJGX1a7QihLBK6ZqfoNOcd-UpmKZv0QlnSitWixVyd3EAOw8m4bs4-Rgy9gFfba8fIeAm7fNkhvwFP8wp-PCIY8DffsYpDvPoA2QLwQLu9ngTk4VqG9xsweGNH8wIYcLfB-_K2Dv0pi8x8P54n6Efm-uH5mt1e3-zba5uK8PXZKoY4b2RjGmhGFkr01FDoKbECs6l6x3XpKO8ByZ4rwWotas76KmQTmiqwPEz9OmQ-5Tirxny1I6-7DgMJkCcc1sGBZFaCFnQ8wNqU8w5Qd8-JT-atG8paRev7eK1PXot-Mdj8tyN4F7gPyIL8PkA_IYu9tn6xcwLVszLuhyllkoWWv8_3fjJLM00cQ7T3z8u6-1i6aUY_ffSzz20oUY</recordid><startdate>20200826</startdate><enddate>20200826</enddate><creator>Zhang, Jing</creator><creator>He, Benzhao</creator><creator>Wu, Wenjie</creator><creator>Alam, Parvej</creator><creator>Zhang, Han</creator><creator>Gong, Junyi</creator><creator>Song, Fengyan</creator><creator>Wang, Zaiyu</creator><creator>Sung, Herman H. Y</creator><creator>Williams, Ian D</creator><creator>Wang, Zhiming</creator><creator>Lam, Jacky W. Y</creator><creator>Tang, Ben Zhong</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4069-1769</orcidid><orcidid>https://orcid.org/0000-0001-5626-5399</orcidid><orcidid>https://orcid.org/0000-0001-7592-7132</orcidid><orcidid>https://orcid.org/0000-0002-3047-3285</orcidid><orcidid>https://orcid.org/0000-0002-1735-4943</orcidid><orcidid>https://orcid.org/0000-0002-0293-964X</orcidid><orcidid>https://orcid.org/0000-0001-6534-4953</orcidid></search><sort><creationdate>20200826</creationdate><title>Molecular Motions in AIEgen Crystals: Turning on Photoluminescence by Force-Induced Filament Sliding</title><author>Zhang, Jing ; He, Benzhao ; Wu, Wenjie ; Alam, Parvej ; Zhang, Han ; Gong, Junyi ; Song, Fengyan ; Wang, Zaiyu ; Sung, Herman H. Y ; Williams, Ian D ; Wang, Zhiming ; Lam, Jacky W. Y ; Tang, Ben Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a390t-203fa5228472097ab1a0e610c4335dfd380b13fe243f84e79d6bef145d4817ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Crystallization</topic><topic>Luminescence</topic><topic>Molecular Structure</topic><topic>Motion</topic><topic>Organogold Compounds - chemistry</topic><topic>Particle Size</topic><topic>Phase Transition</topic><topic>Photochemical Processes</topic><topic>Physical Sciences</topic><topic>Science & Technology</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>He, Benzhao</creatorcontrib><creatorcontrib>Wu, Wenjie</creatorcontrib><creatorcontrib>Alam, Parvej</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Gong, Junyi</creatorcontrib><creatorcontrib>Song, Fengyan</creatorcontrib><creatorcontrib>Wang, Zaiyu</creatorcontrib><creatorcontrib>Sung, Herman H. Y</creatorcontrib><creatorcontrib>Williams, Ian D</creatorcontrib><creatorcontrib>Wang, Zhiming</creatorcontrib><creatorcontrib>Lam, Jacky W. Y</creatorcontrib><creatorcontrib>Tang, Ben Zhong</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jing</au><au>He, Benzhao</au><au>Wu, Wenjie</au><au>Alam, Parvej</au><au>Zhang, Han</au><au>Gong, Junyi</au><au>Song, Fengyan</au><au>Wang, Zaiyu</au><au>Sung, Herman H. Y</au><au>Williams, Ian D</au><au>Wang, Zhiming</au><au>Lam, Jacky W. Y</au><au>Tang, Ben Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Motions in AIEgen Crystals: Turning on Photoluminescence by Force-Induced Filament Sliding</atitle><jtitle>Journal of the American Chemical Society</jtitle><stitle>J AM CHEM SOC</stitle><addtitle>J. Am. Chem. Soc</addtitle><date>2020-08-26</date><risdate>2020</risdate><volume>142</volume><issue>34</issue><spage>14608</spage><epage>14618</epage><pages>14608-14618</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Life process is amazing, and it proceeds against the eternal law of entropy increase through molecular motion and takes energy from the environment to build high-order complexity from chaos to achieve evolution with more sophisticated architectures. Inspired from the elegance of life process and also to effectively exploit the undeveloped solid-state molecular motion, two unique chiral Au(I) complexes were elaborately developed in this study, in which their powders could realize a dramatic transformation from nonemissive isolated crystallites to emissive well-defined microcrystals under the stimulation of mechanical force. Such an unusual crystallization was presumed to be caused by molecular motions driven by the formation of strong aurophilic interactions as well as multiple C–H···F and π–π interactions. Such a prominent macroscopic off/on luminescent switching could also be achieved through extremely subtle molecular motions in the crystal state and presented a filament sliding that occurred in a layer-by-layer molecular stacking fashion with no involvement of any crystal phase transition. Additionally, it had been demonstrated that the manipulation of the solid-state molecular motions could result in the generation of circularly polarized luminescence.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>32787264</pmid><doi>10.1021/jacs.0c06305</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4069-1769</orcidid><orcidid>https://orcid.org/0000-0001-5626-5399</orcidid><orcidid>https://orcid.org/0000-0001-7592-7132</orcidid><orcidid>https://orcid.org/0000-0002-3047-3285</orcidid><orcidid>https://orcid.org/0000-0002-1735-4943</orcidid><orcidid>https://orcid.org/0000-0002-0293-964X</orcidid><orcidid>https://orcid.org/0000-0001-6534-4953</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2020-08, Vol.142 (34), p.14608-14618 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_webofscience_primary_000566667700024 |
source | ACS Publications; MEDLINE; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Chemistry Chemistry, Multidisciplinary Crystallization Luminescence Molecular Structure Motion Organogold Compounds - chemistry Particle Size Phase Transition Photochemical Processes Physical Sciences Science & Technology Surface Properties |
title | Molecular Motions in AIEgen Crystals: Turning on Photoluminescence by Force-Induced Filament Sliding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T05%3A44%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Motions%20in%20AIEgen%20Crystals:%20Turning%20on%20Photoluminescence%20by%20Force-Induced%20Filament%20Sliding&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Zhang,%20Jing&rft.date=2020-08-26&rft.volume=142&rft.issue=34&rft.spage=14608&rft.epage=14618&rft.pages=14608-14618&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.0c06305&rft_dat=%3Cproquest_webof%3E2434058445%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434058445&rft_id=info:pmid/32787264&rfr_iscdi=true |