Numerical simulation and experimental validation of the ventilation system performance in a heated room
The time spent by the occupant indoor the building is significant; therefore, the central objective of the major research was the evaluation of the thermal sensation for the existing people. This study examines the numerical simulation in a room containing a manikin sitting in front of a computer. T...
Gespeichert in:
Veröffentlicht in: | Air quality, atmosphere and health atmosphere and health, 2021-02, Vol.14 (2), p.171-179 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 179 |
---|---|
container_issue | 2 |
container_start_page | 171 |
container_title | Air quality, atmosphere and health |
container_volume | 14 |
creator | Ifa, Sondes Driss, Zied |
description | The time spent by the occupant indoor the building is significant; therefore, the central objective of the major research was the evaluation of the thermal sensation for the existing people. This study examines the numerical simulation in a room containing a manikin sitting in front of a computer. The computational fluid dynamics (CFD) tools were considered using ANSYS Fluent 16.2 software. This software exploits the finite volume method that is based on the resolution of the Navier-Stokes equations. The distribution of the temperature, velocity, static pressure, turbulent kinetic energy, turbulent viscosity, and turbulent dissipation is tested in different planes and different directions to characterize the airflow indoor a heated room. Equally, the thermal comfort is examined by calculating the predicted mean vote (PMV). The comparison between the numerical results and the experimental data founded from the literature prove that the supply of airflow was affected by the presence of the heat sources and the thermal climate is considered as a slightly hot. The use of the adequate meshes is in a good agreement with the experimental data and confirms the validity of the numerical approach. |
doi_str_mv | 10.1007/s11869-020-00923-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000566022800001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2442596325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-cbb998ddc0f76c94361e3dbc1d03a399d3eca35b7da205738f4e67121a7002bd3</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxSMEoqXwBTigSFyQqtDxn9jxBQmtKFSq6AXOlmNPdl0l8WInC_32eJtlKRwQJ4_0fm80z68oXhJ4SwDkRSKkEaoCChWAoqwSj4pT0khWKUbF4-NMmpPiWUq3AAI4iKfFCaOK0lqQ02L9eR4wemv6Mvlh7s3kw1ia0ZX4Y5uFAccpazvTe7dooSunDZa7LPgDnu7ShEOZ-S7EwYwWS5-XlBs0E7oyhjA8L550pk_44vCeFV8vP3xZfaqubz5erd5fV5ZLPlW2bZVqnLPQSWEVZ4Igc60lDphhSjmG1rC6lc5QqCVrOo5CEkqMBKCtY2fFu2Xvdm4HdDZfGU2vtzmJiXc6GK__VEa_0euw05JLxgnNC94cFsTwbcY06cEni31vRgxz0pRzWivBaJ3R13-ht2GOY46XqQYaVddcZIoulI0hpYjd8RgCet-jXnrUuUd936Pem149jHG0_CouA-cL8B3b0CXrMf_6EQOAWgigtMkT7Onm_-mVn-5rXYV5nLKVLdaU8XGN8XfIf9z_ExCMy9I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480895546</pqid></control><display><type>article</type><title>Numerical simulation and experimental validation of the ventilation system performance in a heated room</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Ifa, Sondes ; Driss, Zied</creator><creatorcontrib>Ifa, Sondes ; Driss, Zied</creatorcontrib><description>The time spent by the occupant indoor the building is significant; therefore, the central objective of the major research was the evaluation of the thermal sensation for the existing people. This study examines the numerical simulation in a room containing a manikin sitting in front of a computer. The computational fluid dynamics (CFD) tools were considered using ANSYS Fluent 16.2 software. This software exploits the finite volume method that is based on the resolution of the Navier-Stokes equations. The distribution of the temperature, velocity, static pressure, turbulent kinetic energy, turbulent viscosity, and turbulent dissipation is tested in different planes and different directions to characterize the airflow indoor a heated room. Equally, the thermal comfort is examined by calculating the predicted mean vote (PMV). The comparison between the numerical results and the experimental data founded from the literature prove that the supply of airflow was affected by the presence of the heat sources and the thermal climate is considered as a slightly hot. The use of the adequate meshes is in a good agreement with the experimental data and confirms the validity of the numerical approach.</description><identifier>ISSN: 1873-9318</identifier><identifier>EISSN: 1873-9326</identifier><identifier>DOI: 10.1007/s11869-020-00923-6</identifier><identifier>PMID: 32922561</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aerodynamics ; Air flow ; Atmospheric Protection/Air Quality Control/Air Pollution ; CAD ; Computational fluid dynamics ; Computer aided design ; Computer applications ; Computer programs ; Earth and Environmental Science ; Environment ; Environmental Health ; Environmental Sciences ; Environmental Sciences & Ecology ; Experimental data ; Finite volume method ; Fluid dynamics ; Fluid flow ; Health Promotion and Disease Prevention ; Heat sources ; Hydrodynamics ; Indoor air quality ; Kinetic energy ; Life Sciences & Biomedicine ; Mathematical models ; Navier-Stokes equations ; Numerical simulations ; Predicted Mean Vote index ; Science & Technology ; Software ; Static pressure ; Stress concentration ; Thermal comfort ; Turbulent kinetic energy ; Ventilation ; Viscosity</subject><ispartof>Air quality, atmosphere and health, 2021-02, Vol.14 (2), p.171-179</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000566022800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c474t-cbb998ddc0f76c94361e3dbc1d03a399d3eca35b7da205738f4e67121a7002bd3</citedby><cites>FETCH-LOGICAL-c474t-cbb998ddc0f76c94361e3dbc1d03a399d3eca35b7da205738f4e67121a7002bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11869-020-00923-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11869-020-00923-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,782,786,887,27931,27932,39265,41495,42564,51326</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32922561$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ifa, Sondes</creatorcontrib><creatorcontrib>Driss, Zied</creatorcontrib><title>Numerical simulation and experimental validation of the ventilation system performance in a heated room</title><title>Air quality, atmosphere and health</title><addtitle>Air Qual Atmos Health</addtitle><addtitle>AIR QUAL ATMOS HLTH</addtitle><addtitle>Air Qual Atmos Health</addtitle><description>The time spent by the occupant indoor the building is significant; therefore, the central objective of the major research was the evaluation of the thermal sensation for the existing people. This study examines the numerical simulation in a room containing a manikin sitting in front of a computer. The computational fluid dynamics (CFD) tools were considered using ANSYS Fluent 16.2 software. This software exploits the finite volume method that is based on the resolution of the Navier-Stokes equations. The distribution of the temperature, velocity, static pressure, turbulent kinetic energy, turbulent viscosity, and turbulent dissipation is tested in different planes and different directions to characterize the airflow indoor a heated room. Equally, the thermal comfort is examined by calculating the predicted mean vote (PMV). The comparison between the numerical results and the experimental data founded from the literature prove that the supply of airflow was affected by the presence of the heat sources and the thermal climate is considered as a slightly hot. The use of the adequate meshes is in a good agreement with the experimental data and confirms the validity of the numerical approach.</description><subject>Aerodynamics</subject><subject>Air flow</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>CAD</subject><subject>Computational fluid dynamics</subject><subject>Computer aided design</subject><subject>Computer applications</subject><subject>Computer programs</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Environmental Health</subject><subject>Environmental Sciences</subject><subject>Environmental Sciences & Ecology</subject><subject>Experimental data</subject><subject>Finite volume method</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Health Promotion and Disease Prevention</subject><subject>Heat sources</subject><subject>Hydrodynamics</subject><subject>Indoor air quality</subject><subject>Kinetic energy</subject><subject>Life Sciences & Biomedicine</subject><subject>Mathematical models</subject><subject>Navier-Stokes equations</subject><subject>Numerical simulations</subject><subject>Predicted Mean Vote index</subject><subject>Science & Technology</subject><subject>Software</subject><subject>Static pressure</subject><subject>Stress concentration</subject><subject>Thermal comfort</subject><subject>Turbulent kinetic energy</subject><subject>Ventilation</subject><subject>Viscosity</subject><issn>1873-9318</issn><issn>1873-9326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU9v1DAQxSMEoqXwBTigSFyQqtDxn9jxBQmtKFSq6AXOlmNPdl0l8WInC_32eJtlKRwQJ4_0fm80z68oXhJ4SwDkRSKkEaoCChWAoqwSj4pT0khWKUbF4-NMmpPiWUq3AAI4iKfFCaOK0lqQ02L9eR4wemv6Mvlh7s3kw1ia0ZX4Y5uFAccpazvTe7dooSunDZa7LPgDnu7ShEOZ-S7EwYwWS5-XlBs0E7oyhjA8L550pk_44vCeFV8vP3xZfaqubz5erd5fV5ZLPlW2bZVqnLPQSWEVZ4Igc60lDphhSjmG1rC6lc5QqCVrOo5CEkqMBKCtY2fFu2Xvdm4HdDZfGU2vtzmJiXc6GK__VEa_0euw05JLxgnNC94cFsTwbcY06cEni31vRgxz0pRzWivBaJ3R13-ht2GOY46XqQYaVddcZIoulI0hpYjd8RgCet-jXnrUuUd936Pem149jHG0_CouA-cL8B3b0CXrMf_6EQOAWgigtMkT7Onm_-mVn-5rXYV5nLKVLdaU8XGN8XfIf9z_ExCMy9I</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Ifa, Sondes</creator><creator>Driss, Zied</creator><general>Springer Netherlands</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T2</scope><scope>7TG</scope><scope>7TV</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>KL.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210201</creationdate><title>Numerical simulation and experimental validation of the ventilation system performance in a heated room</title><author>Ifa, Sondes ; Driss, Zied</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-cbb998ddc0f76c94361e3dbc1d03a399d3eca35b7da205738f4e67121a7002bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerodynamics</topic><topic>Air flow</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>CAD</topic><topic>Computational fluid dynamics</topic><topic>Computer aided design</topic><topic>Computer applications</topic><topic>Computer programs</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Environmental Health</topic><topic>Environmental Sciences</topic><topic>Environmental Sciences & Ecology</topic><topic>Experimental data</topic><topic>Finite volume method</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Health Promotion and Disease Prevention</topic><topic>Heat sources</topic><topic>Hydrodynamics</topic><topic>Indoor air quality</topic><topic>Kinetic energy</topic><topic>Life Sciences & Biomedicine</topic><topic>Mathematical models</topic><topic>Navier-Stokes equations</topic><topic>Numerical simulations</topic><topic>Predicted Mean Vote index</topic><topic>Science & Technology</topic><topic>Software</topic><topic>Static pressure</topic><topic>Stress concentration</topic><topic>Thermal comfort</topic><topic>Turbulent kinetic energy</topic><topic>Ventilation</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ifa, Sondes</creatorcontrib><creatorcontrib>Driss, Zied</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Air quality, atmosphere and health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ifa, Sondes</au><au>Driss, Zied</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation and experimental validation of the ventilation system performance in a heated room</atitle><jtitle>Air quality, atmosphere and health</jtitle><stitle>Air Qual Atmos Health</stitle><stitle>AIR QUAL ATMOS HLTH</stitle><addtitle>Air Qual Atmos Health</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>14</volume><issue>2</issue><spage>171</spage><epage>179</epage><pages>171-179</pages><issn>1873-9318</issn><eissn>1873-9326</eissn><abstract>The time spent by the occupant indoor the building is significant; therefore, the central objective of the major research was the evaluation of the thermal sensation for the existing people. This study examines the numerical simulation in a room containing a manikin sitting in front of a computer. The computational fluid dynamics (CFD) tools were considered using ANSYS Fluent 16.2 software. This software exploits the finite volume method that is based on the resolution of the Navier-Stokes equations. The distribution of the temperature, velocity, static pressure, turbulent kinetic energy, turbulent viscosity, and turbulent dissipation is tested in different planes and different directions to characterize the airflow indoor a heated room. Equally, the thermal comfort is examined by calculating the predicted mean vote (PMV). The comparison between the numerical results and the experimental data founded from the literature prove that the supply of airflow was affected by the presence of the heat sources and the thermal climate is considered as a slightly hot. The use of the adequate meshes is in a good agreement with the experimental data and confirms the validity of the numerical approach.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>32922561</pmid><doi>10.1007/s11869-020-00923-6</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1873-9318 |
ispartof | Air quality, atmosphere and health, 2021-02, Vol.14 (2), p.171-179 |
issn | 1873-9318 1873-9326 |
language | eng |
recordid | cdi_webofscience_primary_000566022800001 |
source | SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Aerodynamics Air flow Atmospheric Protection/Air Quality Control/Air Pollution CAD Computational fluid dynamics Computer aided design Computer applications Computer programs Earth and Environmental Science Environment Environmental Health Environmental Sciences Environmental Sciences & Ecology Experimental data Finite volume method Fluid dynamics Fluid flow Health Promotion and Disease Prevention Heat sources Hydrodynamics Indoor air quality Kinetic energy Life Sciences & Biomedicine Mathematical models Navier-Stokes equations Numerical simulations Predicted Mean Vote index Science & Technology Software Static pressure Stress concentration Thermal comfort Turbulent kinetic energy Ventilation Viscosity |
title | Numerical simulation and experimental validation of the ventilation system performance in a heated room |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T16%3A36%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20and%20experimental%20validation%20of%20the%20ventilation%20system%20performance%20in%20a%20heated%20room&rft.jtitle=Air%20quality,%20atmosphere%20and%20health&rft.au=Ifa,%20Sondes&rft.date=2021-02-01&rft.volume=14&rft.issue=2&rft.spage=171&rft.epage=179&rft.pages=171-179&rft.issn=1873-9318&rft.eissn=1873-9326&rft_id=info:doi/10.1007/s11869-020-00923-6&rft_dat=%3Cproquest_webof%3E2442596325%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480895546&rft_id=info:pmid/32922561&rfr_iscdi=true |