Numerical simulation and experimental validation of the ventilation system performance in a heated room

The time spent by the occupant indoor the building is significant; therefore, the central objective of the major research was the evaluation of the thermal sensation for the existing people. This study examines the numerical simulation in a room containing a manikin sitting in front of a computer. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Air quality, atmosphere and health atmosphere and health, 2021-02, Vol.14 (2), p.171-179
Hauptverfasser: Ifa, Sondes, Driss, Zied
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 179
container_issue 2
container_start_page 171
container_title Air quality, atmosphere and health
container_volume 14
creator Ifa, Sondes
Driss, Zied
description The time spent by the occupant indoor the building is significant; therefore, the central objective of the major research was the evaluation of the thermal sensation for the existing people. This study examines the numerical simulation in a room containing a manikin sitting in front of a computer. The computational fluid dynamics (CFD) tools were considered using ANSYS Fluent 16.2 software. This software exploits the finite volume method that is based on the resolution of the Navier-Stokes equations. The distribution of the temperature, velocity, static pressure, turbulent kinetic energy, turbulent viscosity, and turbulent dissipation is tested in different planes and different directions to characterize the airflow indoor a heated room. Equally, the thermal comfort is examined by calculating the predicted mean vote (PMV). The comparison between the numerical results and the experimental data founded from the literature prove that the supply of airflow was affected by the presence of the heat sources and the thermal climate is considered as a slightly hot. The use of the adequate meshes is in a good agreement with the experimental data and confirms the validity of the numerical approach.
doi_str_mv 10.1007/s11869-020-00923-6
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000566022800001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2442596325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-cbb998ddc0f76c94361e3dbc1d03a399d3eca35b7da205738f4e67121a7002bd3</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxSMEoqXwBTigSFyQqtDxn9jxBQmtKFSq6AXOlmNPdl0l8WInC_32eJtlKRwQJ4_0fm80z68oXhJ4SwDkRSKkEaoCChWAoqwSj4pT0khWKUbF4-NMmpPiWUq3AAI4iKfFCaOK0lqQ02L9eR4wemv6Mvlh7s3kw1ia0ZX4Y5uFAccpazvTe7dooSunDZa7LPgDnu7ShEOZ-S7EwYwWS5-XlBs0E7oyhjA8L550pk_44vCeFV8vP3xZfaqubz5erd5fV5ZLPlW2bZVqnLPQSWEVZ4Igc60lDphhSjmG1rC6lc5QqCVrOo5CEkqMBKCtY2fFu2Xvdm4HdDZfGU2vtzmJiXc6GK__VEa_0euw05JLxgnNC94cFsTwbcY06cEni31vRgxz0pRzWivBaJ3R13-ht2GOY46XqQYaVddcZIoulI0hpYjd8RgCet-jXnrUuUd936Pem149jHG0_CouA-cL8B3b0CXrMf_6EQOAWgigtMkT7Onm_-mVn-5rXYV5nLKVLdaU8XGN8XfIf9z_ExCMy9I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480895546</pqid></control><display><type>article</type><title>Numerical simulation and experimental validation of the ventilation system performance in a heated room</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Ifa, Sondes ; Driss, Zied</creator><creatorcontrib>Ifa, Sondes ; Driss, Zied</creatorcontrib><description>The time spent by the occupant indoor the building is significant; therefore, the central objective of the major research was the evaluation of the thermal sensation for the existing people. This study examines the numerical simulation in a room containing a manikin sitting in front of a computer. The computational fluid dynamics (CFD) tools were considered using ANSYS Fluent 16.2 software. This software exploits the finite volume method that is based on the resolution of the Navier-Stokes equations. The distribution of the temperature, velocity, static pressure, turbulent kinetic energy, turbulent viscosity, and turbulent dissipation is tested in different planes and different directions to characterize the airflow indoor a heated room. Equally, the thermal comfort is examined by calculating the predicted mean vote (PMV). The comparison between the numerical results and the experimental data founded from the literature prove that the supply of airflow was affected by the presence of the heat sources and the thermal climate is considered as a slightly hot. The use of the adequate meshes is in a good agreement with the experimental data and confirms the validity of the numerical approach.</description><identifier>ISSN: 1873-9318</identifier><identifier>EISSN: 1873-9326</identifier><identifier>DOI: 10.1007/s11869-020-00923-6</identifier><identifier>PMID: 32922561</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aerodynamics ; Air flow ; Atmospheric Protection/Air Quality Control/Air Pollution ; CAD ; Computational fluid dynamics ; Computer aided design ; Computer applications ; Computer programs ; Earth and Environmental Science ; Environment ; Environmental Health ; Environmental Sciences ; Environmental Sciences &amp; Ecology ; Experimental data ; Finite volume method ; Fluid dynamics ; Fluid flow ; Health Promotion and Disease Prevention ; Heat sources ; Hydrodynamics ; Indoor air quality ; Kinetic energy ; Life Sciences &amp; Biomedicine ; Mathematical models ; Navier-Stokes equations ; Numerical simulations ; Predicted Mean Vote index ; Science &amp; Technology ; Software ; Static pressure ; Stress concentration ; Thermal comfort ; Turbulent kinetic energy ; Ventilation ; Viscosity</subject><ispartof>Air quality, atmosphere and health, 2021-02, Vol.14 (2), p.171-179</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000566022800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c474t-cbb998ddc0f76c94361e3dbc1d03a399d3eca35b7da205738f4e67121a7002bd3</citedby><cites>FETCH-LOGICAL-c474t-cbb998ddc0f76c94361e3dbc1d03a399d3eca35b7da205738f4e67121a7002bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11869-020-00923-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11869-020-00923-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,782,786,887,27931,27932,39265,41495,42564,51326</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32922561$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ifa, Sondes</creatorcontrib><creatorcontrib>Driss, Zied</creatorcontrib><title>Numerical simulation and experimental validation of the ventilation system performance in a heated room</title><title>Air quality, atmosphere and health</title><addtitle>Air Qual Atmos Health</addtitle><addtitle>AIR QUAL ATMOS HLTH</addtitle><addtitle>Air Qual Atmos Health</addtitle><description>The time spent by the occupant indoor the building is significant; therefore, the central objective of the major research was the evaluation of the thermal sensation for the existing people. This study examines the numerical simulation in a room containing a manikin sitting in front of a computer. The computational fluid dynamics (CFD) tools were considered using ANSYS Fluent 16.2 software. This software exploits the finite volume method that is based on the resolution of the Navier-Stokes equations. The distribution of the temperature, velocity, static pressure, turbulent kinetic energy, turbulent viscosity, and turbulent dissipation is tested in different planes and different directions to characterize the airflow indoor a heated room. Equally, the thermal comfort is examined by calculating the predicted mean vote (PMV). The comparison between the numerical results and the experimental data founded from the literature prove that the supply of airflow was affected by the presence of the heat sources and the thermal climate is considered as a slightly hot. The use of the adequate meshes is in a good agreement with the experimental data and confirms the validity of the numerical approach.</description><subject>Aerodynamics</subject><subject>Air flow</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>CAD</subject><subject>Computational fluid dynamics</subject><subject>Computer aided design</subject><subject>Computer applications</subject><subject>Computer programs</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Environmental Health</subject><subject>Environmental Sciences</subject><subject>Environmental Sciences &amp; Ecology</subject><subject>Experimental data</subject><subject>Finite volume method</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Health Promotion and Disease Prevention</subject><subject>Heat sources</subject><subject>Hydrodynamics</subject><subject>Indoor air quality</subject><subject>Kinetic energy</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Mathematical models</subject><subject>Navier-Stokes equations</subject><subject>Numerical simulations</subject><subject>Predicted Mean Vote index</subject><subject>Science &amp; Technology</subject><subject>Software</subject><subject>Static pressure</subject><subject>Stress concentration</subject><subject>Thermal comfort</subject><subject>Turbulent kinetic energy</subject><subject>Ventilation</subject><subject>Viscosity</subject><issn>1873-9318</issn><issn>1873-9326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU9v1DAQxSMEoqXwBTigSFyQqtDxn9jxBQmtKFSq6AXOlmNPdl0l8WInC_32eJtlKRwQJ4_0fm80z68oXhJ4SwDkRSKkEaoCChWAoqwSj4pT0khWKUbF4-NMmpPiWUq3AAI4iKfFCaOK0lqQ02L9eR4wemv6Mvlh7s3kw1ia0ZX4Y5uFAccpazvTe7dooSunDZa7LPgDnu7ShEOZ-S7EwYwWS5-XlBs0E7oyhjA8L550pk_44vCeFV8vP3xZfaqubz5erd5fV5ZLPlW2bZVqnLPQSWEVZ4Igc60lDphhSjmG1rC6lc5QqCVrOo5CEkqMBKCtY2fFu2Xvdm4HdDZfGU2vtzmJiXc6GK__VEa_0euw05JLxgnNC94cFsTwbcY06cEni31vRgxz0pRzWivBaJ3R13-ht2GOY46XqQYaVddcZIoulI0hpYjd8RgCet-jXnrUuUd936Pem149jHG0_CouA-cL8B3b0CXrMf_6EQOAWgigtMkT7Onm_-mVn-5rXYV5nLKVLdaU8XGN8XfIf9z_ExCMy9I</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Ifa, Sondes</creator><creator>Driss, Zied</creator><general>Springer Netherlands</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T2</scope><scope>7TG</scope><scope>7TV</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>KL.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210201</creationdate><title>Numerical simulation and experimental validation of the ventilation system performance in a heated room</title><author>Ifa, Sondes ; Driss, Zied</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-cbb998ddc0f76c94361e3dbc1d03a399d3eca35b7da205738f4e67121a7002bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerodynamics</topic><topic>Air flow</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>CAD</topic><topic>Computational fluid dynamics</topic><topic>Computer aided design</topic><topic>Computer applications</topic><topic>Computer programs</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Environmental Health</topic><topic>Environmental Sciences</topic><topic>Environmental Sciences &amp; Ecology</topic><topic>Experimental data</topic><topic>Finite volume method</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Health Promotion and Disease Prevention</topic><topic>Heat sources</topic><topic>Hydrodynamics</topic><topic>Indoor air quality</topic><topic>Kinetic energy</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Mathematical models</topic><topic>Navier-Stokes equations</topic><topic>Numerical simulations</topic><topic>Predicted Mean Vote index</topic><topic>Science &amp; Technology</topic><topic>Software</topic><topic>Static pressure</topic><topic>Stress concentration</topic><topic>Thermal comfort</topic><topic>Turbulent kinetic energy</topic><topic>Ventilation</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ifa, Sondes</creatorcontrib><creatorcontrib>Driss, Zied</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Air quality, atmosphere and health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ifa, Sondes</au><au>Driss, Zied</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation and experimental validation of the ventilation system performance in a heated room</atitle><jtitle>Air quality, atmosphere and health</jtitle><stitle>Air Qual Atmos Health</stitle><stitle>AIR QUAL ATMOS HLTH</stitle><addtitle>Air Qual Atmos Health</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>14</volume><issue>2</issue><spage>171</spage><epage>179</epage><pages>171-179</pages><issn>1873-9318</issn><eissn>1873-9326</eissn><abstract>The time spent by the occupant indoor the building is significant; therefore, the central objective of the major research was the evaluation of the thermal sensation for the existing people. This study examines the numerical simulation in a room containing a manikin sitting in front of a computer. The computational fluid dynamics (CFD) tools were considered using ANSYS Fluent 16.2 software. This software exploits the finite volume method that is based on the resolution of the Navier-Stokes equations. The distribution of the temperature, velocity, static pressure, turbulent kinetic energy, turbulent viscosity, and turbulent dissipation is tested in different planes and different directions to characterize the airflow indoor a heated room. Equally, the thermal comfort is examined by calculating the predicted mean vote (PMV). The comparison between the numerical results and the experimental data founded from the literature prove that the supply of airflow was affected by the presence of the heat sources and the thermal climate is considered as a slightly hot. The use of the adequate meshes is in a good agreement with the experimental data and confirms the validity of the numerical approach.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>32922561</pmid><doi>10.1007/s11869-020-00923-6</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1873-9318
ispartof Air quality, atmosphere and health, 2021-02, Vol.14 (2), p.171-179
issn 1873-9318
1873-9326
language eng
recordid cdi_webofscience_primary_000566022800001
source SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Aerodynamics
Air flow
Atmospheric Protection/Air Quality Control/Air Pollution
CAD
Computational fluid dynamics
Computer aided design
Computer applications
Computer programs
Earth and Environmental Science
Environment
Environmental Health
Environmental Sciences
Environmental Sciences & Ecology
Experimental data
Finite volume method
Fluid dynamics
Fluid flow
Health Promotion and Disease Prevention
Heat sources
Hydrodynamics
Indoor air quality
Kinetic energy
Life Sciences & Biomedicine
Mathematical models
Navier-Stokes equations
Numerical simulations
Predicted Mean Vote index
Science & Technology
Software
Static pressure
Stress concentration
Thermal comfort
Turbulent kinetic energy
Ventilation
Viscosity
title Numerical simulation and experimental validation of the ventilation system performance in a heated room
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T16%3A36%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20and%20experimental%20validation%20of%20the%20ventilation%20system%20performance%20in%20a%20heated%20room&rft.jtitle=Air%20quality,%20atmosphere%20and%20health&rft.au=Ifa,%20Sondes&rft.date=2021-02-01&rft.volume=14&rft.issue=2&rft.spage=171&rft.epage=179&rft.pages=171-179&rft.issn=1873-9318&rft.eissn=1873-9326&rft_id=info:doi/10.1007/s11869-020-00923-6&rft_dat=%3Cproquest_webof%3E2442596325%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480895546&rft_id=info:pmid/32922561&rfr_iscdi=true