Quinone perception in plants via leucine-rich-repeat receptor-like kinases

Quinones are produced and sensed in all kingdoms of life 1 – 4 . Plants are primary producers of quinone 1 , 2 , but the role of quinone as a signalling agent in plants remains largely unknown. One well-documented role of quinone is in the induction of haustoria (specialized feeding structures) in p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2020-11, Vol.587 (7832), p.92-97
Hauptverfasser: Laohavisit, Anuphon, Wakatake, Takanori, Ishihama, Nobuaki, Mulvey, Hugh, Takizawa, Kaori, Suzuki, Takamasa, Shirasu, Ken
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quinones are produced and sensed in all kingdoms of life 1 – 4 . Plants are primary producers of quinone 1 , 2 , but the role of quinone as a signalling agent in plants remains largely unknown. One well-documented role of quinone is in the induction of haustoria (specialized feeding structures) in plants that parasitize roots, which occurs in the presence of the host-derived quinone compound 2,6-dimethoxy-1,4-benzoquinone (DMBQ) 5 . However, how parasitic plants sense DMBQ remains unclear, as is whether nonparasitic plants are capable of sensing quinones. Here we use Arabidopsis thaliana and DMBQ as a model plant and quinone to show that DMBQ signalling occurs in Arabidopsis via elevation of cytosolic Ca 2 + concentration. We performed a forward genetic screen in Arabidopsis that isolated DMBQ-unresponsive mutants, which we named cannot respond to DMBQ 1 ( card1 ). The CANNOT RESPOND TO DMBQ 1 ( CARD1 ; At5g49760 , also known as HPCA1 ) gene encodes a leucine-rich-repeat receptor-like kinase that is highly conserved in land plants. In Arabidopsis , DMBQ triggers defence-related gene expression, and card1 mutants show impaired immunity against bacterial pathogens. In Phtheirospermum japonicum (a plant that parasitizes roots), DMBQ initiates Ca 2+ signalling in the root and is important for the development of the haustorium. Furthermore, CARD1 homologues from this parasitic plant complement DMBQ-induced elevation of cytosolic Ca 2+ concentration in the card1 mutant. Our results demonstrate that plants—unlike animals and bacteria—use leucine-rich-repeat receptor-like kinases for quinone signalling. This work provides insights into the role of quinone signalling and CARD1 functions in plants that help us to better understand the signalling pathways used during the formation of the haustorium in parasitic plants and in plant immunity in nonparasitic plants. Dimethoxy-1,4-benzoquinone signalling occurs in Arabidopsis and in the root parasite Phtheirospermum japonicum via increases in cytosolic Ca 2+ concentration mediated by the leucine-rich-repeat receptor-like kinase CARD1 in Arabidopsis , or by its homologues in P. japonicum .
ISSN:0028-0836
1476-4687
DOI:10.1038/s41586-020-2655-4