High-temperature corrosion of Sn–Bi–Zn–Ga alloys as heat transfer fluid
The new heat transfer alloy is highly reactive at high temperatures, and the corrosion of the container material determines the service life of the heat transfer system. The high-temperature corrosion of Sn–Bi–Zn–Ga alloys as heat transfer fluid was investigated. The microstructure and elemental dis...
Gespeichert in:
Veröffentlicht in: | Rare metals 2021-08, Vol.40 (8), p.2221-2229 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2229 |
---|---|
container_issue | 8 |
container_start_page | 2221 |
container_title | Rare metals |
container_volume | 40 |
creator | Wang, Qing-Meng Cheng, Xiao-Min Li, Yuan-Yuan Yu, Guo-Ming Liu, Zhi |
description | The new heat transfer alloy is highly reactive at high temperatures, and the corrosion of the container material determines the service life of the heat transfer system. The high-temperature corrosion of Sn–Bi–Zn–Ga alloys as heat transfer fluid was investigated. The microstructure and elemental distribution were studied by field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS). The thermal properties before and after corrosion were studied by differential scanning calorimetry (DSC). The results show that the corrosion kinetics of the studied materials follows the parabolic law and the thermal properties after corrosion are improved. Ga significantly improves the thermal conductivity. 316 stainless steel exhibits excellent corrosion resistance due to its high Cr and Ni contents. Corrosion mechanism analysis shows that the oxidation of Ga has a smaller Gibbs free energy, and an oxide forms at the corrosion interface to prevent dissolution corrosion and oxidative corrosion of the container material.
Graphic abstract |
doi_str_mv | 10.1007/s12598-020-01542-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000565476200002CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2524380725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-716761c5dfa624a4992d61eba11286d9b285e3d9e57d8a43c9b4ca62b00c865e3</originalsourceid><addsrcrecordid>eNqNkL1OwzAUhSMEElB4AaZIjChw7diOM0IELVIRA7CwWI7jtKnSuNiOaDfegTfkSXAJgg2xXB_J37k_J4pOEJwjgOzCIUxzngCGBBAlOFnvRAeIsyzJEKe7QQOgBChG-9GhcwsAQhiDg-hu0szmidfLlbbS91bHylhrXGO62NTxQ_fx9n7VhPK8VWMZy7Y1GxdLF8-19LG3snO1tnHd9k11FO3VsnX6-PsdRU8314_FJJnej2-Ly2miUpT7sBPLGFK0qiXDRJI8xxVDupQIYc6qvMSc6rTKNc0qLkmq8pKogJYAirPwNYpOh74ra1567bxYmN52YaTAFJOUQ4ZpoPBAqXCQs7oWK9sspd0IBGIbmxhiEyE28RWbWAcTH0yvujS1U43ulP4xAgBllGQMBwW4aLz0IarC9J0P1rP_WwOdDrQLRDfT9veGP9b7BK_ik2E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524380725</pqid></control><display><type>article</type><title>High-temperature corrosion of Sn–Bi–Zn–Ga alloys as heat transfer fluid</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Qing-Meng ; Cheng, Xiao-Min ; Li, Yuan-Yuan ; Yu, Guo-Ming ; Liu, Zhi</creator><creatorcontrib>Wang, Qing-Meng ; Cheng, Xiao-Min ; Li, Yuan-Yuan ; Yu, Guo-Ming ; Liu, Zhi</creatorcontrib><description>The new heat transfer alloy is highly reactive at high temperatures, and the corrosion of the container material determines the service life of the heat transfer system. The high-temperature corrosion of Sn–Bi–Zn–Ga alloys as heat transfer fluid was investigated. The microstructure and elemental distribution were studied by field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS). The thermal properties before and after corrosion were studied by differential scanning calorimetry (DSC). The results show that the corrosion kinetics of the studied materials follows the parabolic law and the thermal properties after corrosion are improved. Ga significantly improves the thermal conductivity. 316 stainless steel exhibits excellent corrosion resistance due to its high Cr and Ni contents. Corrosion mechanism analysis shows that the oxidation of Ga has a smaller Gibbs free energy, and an oxide forms at the corrosion interface to prevent dissolution corrosion and oxidative corrosion of the container material.
Graphic abstract</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-020-01542-x</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Biomaterials ; Bismuth ; Chemistry and Materials Science ; Containers ; Corrosion ; Corrosion mechanisms ; Corrosion resistance ; Corrosion resistant alloys ; Corrosion resistant steels ; Emission analysis ; Energy ; Field emission microscopy ; Gallium base alloys ; Gibbs free energy ; Heat transfer ; High temperature ; Materials Engineering ; Materials Science ; Materials Science, Multidisciplinary ; Metallic Materials ; Metallurgy & Metallurgical Engineering ; Nanoscale Science and Technology ; Nickel ; Original Article ; Oxidation ; Physical Chemistry ; Reaction kinetics ; Science & Technology ; Service life ; Stainless steels ; Technology ; Thermal conductivity ; Thermodynamic properties</subject><ispartof>Rare metals, 2021-08, Vol.40 (8), p.2221-2229</ispartof><rights>The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>6</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000565476200002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c319t-716761c5dfa624a4992d61eba11286d9b285e3d9e57d8a43c9b4ca62b00c865e3</citedby><cites>FETCH-LOGICAL-c319t-716761c5dfa624a4992d61eba11286d9b285e3d9e57d8a43c9b4ca62b00c865e3</cites><orcidid>0000-0002-5057-9001</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12598-020-01542-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12598-020-01542-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Wang, Qing-Meng</creatorcontrib><creatorcontrib>Cheng, Xiao-Min</creatorcontrib><creatorcontrib>Li, Yuan-Yuan</creatorcontrib><creatorcontrib>Yu, Guo-Ming</creatorcontrib><creatorcontrib>Liu, Zhi</creatorcontrib><title>High-temperature corrosion of Sn–Bi–Zn–Ga alloys as heat transfer fluid</title><title>Rare metals</title><addtitle>Rare Met</addtitle><addtitle>RARE METALS</addtitle><description>The new heat transfer alloy is highly reactive at high temperatures, and the corrosion of the container material determines the service life of the heat transfer system. The high-temperature corrosion of Sn–Bi–Zn–Ga alloys as heat transfer fluid was investigated. The microstructure and elemental distribution were studied by field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS). The thermal properties before and after corrosion were studied by differential scanning calorimetry (DSC). The results show that the corrosion kinetics of the studied materials follows the parabolic law and the thermal properties after corrosion are improved. Ga significantly improves the thermal conductivity. 316 stainless steel exhibits excellent corrosion resistance due to its high Cr and Ni contents. Corrosion mechanism analysis shows that the oxidation of Ga has a smaller Gibbs free energy, and an oxide forms at the corrosion interface to prevent dissolution corrosion and oxidative corrosion of the container material.
Graphic abstract</description><subject>Biomaterials</subject><subject>Bismuth</subject><subject>Chemistry and Materials Science</subject><subject>Containers</subject><subject>Corrosion</subject><subject>Corrosion mechanisms</subject><subject>Corrosion resistance</subject><subject>Corrosion resistant alloys</subject><subject>Corrosion resistant steels</subject><subject>Emission analysis</subject><subject>Energy</subject><subject>Field emission microscopy</subject><subject>Gallium base alloys</subject><subject>Gibbs free energy</subject><subject>Heat transfer</subject><subject>High temperature</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Metallic Materials</subject><subject>Metallurgy & Metallurgical Engineering</subject><subject>Nanoscale Science and Technology</subject><subject>Nickel</subject><subject>Original Article</subject><subject>Oxidation</subject><subject>Physical Chemistry</subject><subject>Reaction kinetics</subject><subject>Science & Technology</subject><subject>Service life</subject><subject>Stainless steels</subject><subject>Technology</subject><subject>Thermal conductivity</subject><subject>Thermodynamic properties</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkL1OwzAUhSMEElB4AaZIjChw7diOM0IELVIRA7CwWI7jtKnSuNiOaDfegTfkSXAJgg2xXB_J37k_J4pOEJwjgOzCIUxzngCGBBAlOFnvRAeIsyzJEKe7QQOgBChG-9GhcwsAQhiDg-hu0szmidfLlbbS91bHylhrXGO62NTxQ_fx9n7VhPK8VWMZy7Y1GxdLF8-19LG3snO1tnHd9k11FO3VsnX6-PsdRU8314_FJJnej2-Ly2miUpT7sBPLGFK0qiXDRJI8xxVDupQIYc6qvMSc6rTKNc0qLkmq8pKogJYAirPwNYpOh74ra1567bxYmN52YaTAFJOUQ4ZpoPBAqXCQs7oWK9sspd0IBGIbmxhiEyE28RWbWAcTH0yvujS1U43ulP4xAgBllGQMBwW4aLz0IarC9J0P1rP_WwOdDrQLRDfT9veGP9b7BK_ik2E</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Wang, Qing-Meng</creator><creator>Cheng, Xiao-Min</creator><creator>Li, Yuan-Yuan</creator><creator>Yu, Guo-Ming</creator><creator>Liu, Zhi</creator><general>Nonferrous Metals Society of China</general><general>Nonferrous Metals Soc China</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-5057-9001</orcidid></search><sort><creationdate>20210801</creationdate><title>High-temperature corrosion of Sn–Bi–Zn–Ga alloys as heat transfer fluid</title><author>Wang, Qing-Meng ; Cheng, Xiao-Min ; Li, Yuan-Yuan ; Yu, Guo-Ming ; Liu, Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-716761c5dfa624a4992d61eba11286d9b285e3d9e57d8a43c9b4ca62b00c865e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomaterials</topic><topic>Bismuth</topic><topic>Chemistry and Materials Science</topic><topic>Containers</topic><topic>Corrosion</topic><topic>Corrosion mechanisms</topic><topic>Corrosion resistance</topic><topic>Corrosion resistant alloys</topic><topic>Corrosion resistant steels</topic><topic>Emission analysis</topic><topic>Energy</topic><topic>Field emission microscopy</topic><topic>Gallium base alloys</topic><topic>Gibbs free energy</topic><topic>Heat transfer</topic><topic>High temperature</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Metallic Materials</topic><topic>Metallurgy & Metallurgical Engineering</topic><topic>Nanoscale Science and Technology</topic><topic>Nickel</topic><topic>Original Article</topic><topic>Oxidation</topic><topic>Physical Chemistry</topic><topic>Reaction kinetics</topic><topic>Science & Technology</topic><topic>Service life</topic><topic>Stainless steels</topic><topic>Technology</topic><topic>Thermal conductivity</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qing-Meng</creatorcontrib><creatorcontrib>Cheng, Xiao-Min</creatorcontrib><creatorcontrib>Li, Yuan-Yuan</creatorcontrib><creatorcontrib>Yu, Guo-Ming</creatorcontrib><creatorcontrib>Liu, Zhi</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qing-Meng</au><au>Cheng, Xiao-Min</au><au>Li, Yuan-Yuan</au><au>Yu, Guo-Ming</au><au>Liu, Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-temperature corrosion of Sn–Bi–Zn–Ga alloys as heat transfer fluid</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><stitle>RARE METALS</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>40</volume><issue>8</issue><spage>2221</spage><epage>2229</epage><pages>2221-2229</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>The new heat transfer alloy is highly reactive at high temperatures, and the corrosion of the container material determines the service life of the heat transfer system. The high-temperature corrosion of Sn–Bi–Zn–Ga alloys as heat transfer fluid was investigated. The microstructure and elemental distribution were studied by field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS). The thermal properties before and after corrosion were studied by differential scanning calorimetry (DSC). The results show that the corrosion kinetics of the studied materials follows the parabolic law and the thermal properties after corrosion are improved. Ga significantly improves the thermal conductivity. 316 stainless steel exhibits excellent corrosion resistance due to its high Cr and Ni contents. Corrosion mechanism analysis shows that the oxidation of Ga has a smaller Gibbs free energy, and an oxide forms at the corrosion interface to prevent dissolution corrosion and oxidative corrosion of the container material.
Graphic abstract</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-020-01542-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5057-9001</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-0521 |
ispartof | Rare metals, 2021-08, Vol.40 (8), p.2221-2229 |
issn | 1001-0521 1867-7185 |
language | eng |
recordid | cdi_webofscience_primary_000565476200002CitationCount |
source | SpringerNature Journals; Alma/SFX Local Collection |
subjects | Biomaterials Bismuth Chemistry and Materials Science Containers Corrosion Corrosion mechanisms Corrosion resistance Corrosion resistant alloys Corrosion resistant steels Emission analysis Energy Field emission microscopy Gallium base alloys Gibbs free energy Heat transfer High temperature Materials Engineering Materials Science Materials Science, Multidisciplinary Metallic Materials Metallurgy & Metallurgical Engineering Nanoscale Science and Technology Nickel Original Article Oxidation Physical Chemistry Reaction kinetics Science & Technology Service life Stainless steels Technology Thermal conductivity Thermodynamic properties |
title | High-temperature corrosion of Sn–Bi–Zn–Ga alloys as heat transfer fluid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A10%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-temperature%20corrosion%20of%20Sn%E2%80%93Bi%E2%80%93Zn%E2%80%93Ga%20alloys%20as%20heat%20transfer%20fluid&rft.jtitle=Rare%20metals&rft.au=Wang,%20Qing-Meng&rft.date=2021-08-01&rft.volume=40&rft.issue=8&rft.spage=2221&rft.epage=2229&rft.pages=2221-2229&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-020-01542-x&rft_dat=%3Cproquest_webof%3E2524380725%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2524380725&rft_id=info:pmid/&rfr_iscdi=true |