High-temperature corrosion of Sn–Bi–Zn–Ga alloys as heat transfer fluid

The new heat transfer alloy is highly reactive at high temperatures, and the corrosion of the container material determines the service life of the heat transfer system. The high-temperature corrosion of Sn–Bi–Zn–Ga alloys as heat transfer fluid was investigated. The microstructure and elemental dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rare metals 2021-08, Vol.40 (8), p.2221-2229
Hauptverfasser: Wang, Qing-Meng, Cheng, Xiao-Min, Li, Yuan-Yuan, Yu, Guo-Ming, Liu, Zhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2229
container_issue 8
container_start_page 2221
container_title Rare metals
container_volume 40
creator Wang, Qing-Meng
Cheng, Xiao-Min
Li, Yuan-Yuan
Yu, Guo-Ming
Liu, Zhi
description The new heat transfer alloy is highly reactive at high temperatures, and the corrosion of the container material determines the service life of the heat transfer system. The high-temperature corrosion of Sn–Bi–Zn–Ga alloys as heat transfer fluid was investigated. The microstructure and elemental distribution were studied by field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS). The thermal properties before and after corrosion were studied by differential scanning calorimetry (DSC). The results show that the corrosion kinetics of the studied materials follows the parabolic law and the thermal properties after corrosion are improved. Ga significantly improves the thermal conductivity. 316 stainless steel exhibits excellent corrosion resistance due to its high Cr and Ni contents. Corrosion mechanism analysis shows that the oxidation of Ga has a smaller Gibbs free energy, and an oxide forms at the corrosion interface to prevent dissolution corrosion and oxidative corrosion of the container material. Graphic abstract
doi_str_mv 10.1007/s12598-020-01542-x
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000565476200002CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2524380725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-716761c5dfa624a4992d61eba11286d9b285e3d9e57d8a43c9b4ca62b00c865e3</originalsourceid><addsrcrecordid>eNqNkL1OwzAUhSMEElB4AaZIjChw7diOM0IELVIRA7CwWI7jtKnSuNiOaDfegTfkSXAJgg2xXB_J37k_J4pOEJwjgOzCIUxzngCGBBAlOFnvRAeIsyzJEKe7QQOgBChG-9GhcwsAQhiDg-hu0szmidfLlbbS91bHylhrXGO62NTxQ_fx9n7VhPK8VWMZy7Y1GxdLF8-19LG3snO1tnHd9k11FO3VsnX6-PsdRU8314_FJJnej2-Ly2miUpT7sBPLGFK0qiXDRJI8xxVDupQIYc6qvMSc6rTKNc0qLkmq8pKogJYAirPwNYpOh74ra1567bxYmN52YaTAFJOUQ4ZpoPBAqXCQs7oWK9sspd0IBGIbmxhiEyE28RWbWAcTH0yvujS1U43ulP4xAgBllGQMBwW4aLz0IarC9J0P1rP_WwOdDrQLRDfT9veGP9b7BK_ik2E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524380725</pqid></control><display><type>article</type><title>High-temperature corrosion of Sn–Bi–Zn–Ga alloys as heat transfer fluid</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Qing-Meng ; Cheng, Xiao-Min ; Li, Yuan-Yuan ; Yu, Guo-Ming ; Liu, Zhi</creator><creatorcontrib>Wang, Qing-Meng ; Cheng, Xiao-Min ; Li, Yuan-Yuan ; Yu, Guo-Ming ; Liu, Zhi</creatorcontrib><description>The new heat transfer alloy is highly reactive at high temperatures, and the corrosion of the container material determines the service life of the heat transfer system. The high-temperature corrosion of Sn–Bi–Zn–Ga alloys as heat transfer fluid was investigated. The microstructure and elemental distribution were studied by field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS). The thermal properties before and after corrosion were studied by differential scanning calorimetry (DSC). The results show that the corrosion kinetics of the studied materials follows the parabolic law and the thermal properties after corrosion are improved. Ga significantly improves the thermal conductivity. 316 stainless steel exhibits excellent corrosion resistance due to its high Cr and Ni contents. Corrosion mechanism analysis shows that the oxidation of Ga has a smaller Gibbs free energy, and an oxide forms at the corrosion interface to prevent dissolution corrosion and oxidative corrosion of the container material. Graphic abstract</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-020-01542-x</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Biomaterials ; Bismuth ; Chemistry and Materials Science ; Containers ; Corrosion ; Corrosion mechanisms ; Corrosion resistance ; Corrosion resistant alloys ; Corrosion resistant steels ; Emission analysis ; Energy ; Field emission microscopy ; Gallium base alloys ; Gibbs free energy ; Heat transfer ; High temperature ; Materials Engineering ; Materials Science ; Materials Science, Multidisciplinary ; Metallic Materials ; Metallurgy &amp; Metallurgical Engineering ; Nanoscale Science and Technology ; Nickel ; Original Article ; Oxidation ; Physical Chemistry ; Reaction kinetics ; Science &amp; Technology ; Service life ; Stainless steels ; Technology ; Thermal conductivity ; Thermodynamic properties</subject><ispartof>Rare metals, 2021-08, Vol.40 (8), p.2221-2229</ispartof><rights>The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>6</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000565476200002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c319t-716761c5dfa624a4992d61eba11286d9b285e3d9e57d8a43c9b4ca62b00c865e3</citedby><cites>FETCH-LOGICAL-c319t-716761c5dfa624a4992d61eba11286d9b285e3d9e57d8a43c9b4ca62b00c865e3</cites><orcidid>0000-0002-5057-9001</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12598-020-01542-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12598-020-01542-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Wang, Qing-Meng</creatorcontrib><creatorcontrib>Cheng, Xiao-Min</creatorcontrib><creatorcontrib>Li, Yuan-Yuan</creatorcontrib><creatorcontrib>Yu, Guo-Ming</creatorcontrib><creatorcontrib>Liu, Zhi</creatorcontrib><title>High-temperature corrosion of Sn–Bi–Zn–Ga alloys as heat transfer fluid</title><title>Rare metals</title><addtitle>Rare Met</addtitle><addtitle>RARE METALS</addtitle><description>The new heat transfer alloy is highly reactive at high temperatures, and the corrosion of the container material determines the service life of the heat transfer system. The high-temperature corrosion of Sn–Bi–Zn–Ga alloys as heat transfer fluid was investigated. The microstructure and elemental distribution were studied by field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS). The thermal properties before and after corrosion were studied by differential scanning calorimetry (DSC). The results show that the corrosion kinetics of the studied materials follows the parabolic law and the thermal properties after corrosion are improved. Ga significantly improves the thermal conductivity. 316 stainless steel exhibits excellent corrosion resistance due to its high Cr and Ni contents. Corrosion mechanism analysis shows that the oxidation of Ga has a smaller Gibbs free energy, and an oxide forms at the corrosion interface to prevent dissolution corrosion and oxidative corrosion of the container material. Graphic abstract</description><subject>Biomaterials</subject><subject>Bismuth</subject><subject>Chemistry and Materials Science</subject><subject>Containers</subject><subject>Corrosion</subject><subject>Corrosion mechanisms</subject><subject>Corrosion resistance</subject><subject>Corrosion resistant alloys</subject><subject>Corrosion resistant steels</subject><subject>Emission analysis</subject><subject>Energy</subject><subject>Field emission microscopy</subject><subject>Gallium base alloys</subject><subject>Gibbs free energy</subject><subject>Heat transfer</subject><subject>High temperature</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Metallic Materials</subject><subject>Metallurgy &amp; Metallurgical Engineering</subject><subject>Nanoscale Science and Technology</subject><subject>Nickel</subject><subject>Original Article</subject><subject>Oxidation</subject><subject>Physical Chemistry</subject><subject>Reaction kinetics</subject><subject>Science &amp; Technology</subject><subject>Service life</subject><subject>Stainless steels</subject><subject>Technology</subject><subject>Thermal conductivity</subject><subject>Thermodynamic properties</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkL1OwzAUhSMEElB4AaZIjChw7diOM0IELVIRA7CwWI7jtKnSuNiOaDfegTfkSXAJgg2xXB_J37k_J4pOEJwjgOzCIUxzngCGBBAlOFnvRAeIsyzJEKe7QQOgBChG-9GhcwsAQhiDg-hu0szmidfLlbbS91bHylhrXGO62NTxQ_fx9n7VhPK8VWMZy7Y1GxdLF8-19LG3snO1tnHd9k11FO3VsnX6-PsdRU8314_FJJnej2-Ly2miUpT7sBPLGFK0qiXDRJI8xxVDupQIYc6qvMSc6rTKNc0qLkmq8pKogJYAirPwNYpOh74ra1567bxYmN52YaTAFJOUQ4ZpoPBAqXCQs7oWK9sspd0IBGIbmxhiEyE28RWbWAcTH0yvujS1U43ulP4xAgBllGQMBwW4aLz0IarC9J0P1rP_WwOdDrQLRDfT9veGP9b7BK_ik2E</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Wang, Qing-Meng</creator><creator>Cheng, Xiao-Min</creator><creator>Li, Yuan-Yuan</creator><creator>Yu, Guo-Ming</creator><creator>Liu, Zhi</creator><general>Nonferrous Metals Society of China</general><general>Nonferrous Metals Soc China</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-5057-9001</orcidid></search><sort><creationdate>20210801</creationdate><title>High-temperature corrosion of Sn–Bi–Zn–Ga alloys as heat transfer fluid</title><author>Wang, Qing-Meng ; Cheng, Xiao-Min ; Li, Yuan-Yuan ; Yu, Guo-Ming ; Liu, Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-716761c5dfa624a4992d61eba11286d9b285e3d9e57d8a43c9b4ca62b00c865e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomaterials</topic><topic>Bismuth</topic><topic>Chemistry and Materials Science</topic><topic>Containers</topic><topic>Corrosion</topic><topic>Corrosion mechanisms</topic><topic>Corrosion resistance</topic><topic>Corrosion resistant alloys</topic><topic>Corrosion resistant steels</topic><topic>Emission analysis</topic><topic>Energy</topic><topic>Field emission microscopy</topic><topic>Gallium base alloys</topic><topic>Gibbs free energy</topic><topic>Heat transfer</topic><topic>High temperature</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Metallic Materials</topic><topic>Metallurgy &amp; Metallurgical Engineering</topic><topic>Nanoscale Science and Technology</topic><topic>Nickel</topic><topic>Original Article</topic><topic>Oxidation</topic><topic>Physical Chemistry</topic><topic>Reaction kinetics</topic><topic>Science &amp; Technology</topic><topic>Service life</topic><topic>Stainless steels</topic><topic>Technology</topic><topic>Thermal conductivity</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qing-Meng</creatorcontrib><creatorcontrib>Cheng, Xiao-Min</creatorcontrib><creatorcontrib>Li, Yuan-Yuan</creatorcontrib><creatorcontrib>Yu, Guo-Ming</creatorcontrib><creatorcontrib>Liu, Zhi</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qing-Meng</au><au>Cheng, Xiao-Min</au><au>Li, Yuan-Yuan</au><au>Yu, Guo-Ming</au><au>Liu, Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-temperature corrosion of Sn–Bi–Zn–Ga alloys as heat transfer fluid</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><stitle>RARE METALS</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>40</volume><issue>8</issue><spage>2221</spage><epage>2229</epage><pages>2221-2229</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>The new heat transfer alloy is highly reactive at high temperatures, and the corrosion of the container material determines the service life of the heat transfer system. The high-temperature corrosion of Sn–Bi–Zn–Ga alloys as heat transfer fluid was investigated. The microstructure and elemental distribution were studied by field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS). The thermal properties before and after corrosion were studied by differential scanning calorimetry (DSC). The results show that the corrosion kinetics of the studied materials follows the parabolic law and the thermal properties after corrosion are improved. Ga significantly improves the thermal conductivity. 316 stainless steel exhibits excellent corrosion resistance due to its high Cr and Ni contents. Corrosion mechanism analysis shows that the oxidation of Ga has a smaller Gibbs free energy, and an oxide forms at the corrosion interface to prevent dissolution corrosion and oxidative corrosion of the container material. Graphic abstract</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-020-01542-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5057-9001</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1001-0521
ispartof Rare metals, 2021-08, Vol.40 (8), p.2221-2229
issn 1001-0521
1867-7185
language eng
recordid cdi_webofscience_primary_000565476200002CitationCount
source SpringerNature Journals; Alma/SFX Local Collection
subjects Biomaterials
Bismuth
Chemistry and Materials Science
Containers
Corrosion
Corrosion mechanisms
Corrosion resistance
Corrosion resistant alloys
Corrosion resistant steels
Emission analysis
Energy
Field emission microscopy
Gallium base alloys
Gibbs free energy
Heat transfer
High temperature
Materials Engineering
Materials Science
Materials Science, Multidisciplinary
Metallic Materials
Metallurgy & Metallurgical Engineering
Nanoscale Science and Technology
Nickel
Original Article
Oxidation
Physical Chemistry
Reaction kinetics
Science & Technology
Service life
Stainless steels
Technology
Thermal conductivity
Thermodynamic properties
title High-temperature corrosion of Sn–Bi–Zn–Ga alloys as heat transfer fluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A10%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-temperature%20corrosion%20of%20Sn%E2%80%93Bi%E2%80%93Zn%E2%80%93Ga%20alloys%20as%20heat%20transfer%20fluid&rft.jtitle=Rare%20metals&rft.au=Wang,%20Qing-Meng&rft.date=2021-08-01&rft.volume=40&rft.issue=8&rft.spage=2221&rft.epage=2229&rft.pages=2221-2229&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-020-01542-x&rft_dat=%3Cproquest_webof%3E2524380725%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2524380725&rft_id=info:pmid/&rfr_iscdi=true