Evolution Model for Epidemic Diseases Based on the Kaplan-Meier Curve Determination
We show a simple model of the dynamics of a viral process based, on the determination of the Kaplan-Meier curvePof the virus. Together with the function of the newly infected individualsI, this model allows us to predict the evolution of the resulting epidemic process in terms of the numberEof the d...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2020-08, Vol.8 (8), p.1260, Article 1260 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 1260 |
container_title | Mathematics (Basel) |
container_volume | 8 |
creator | Calabuig, Jose M. Garcia-Raffi, Luis M. Garcia-Valiente, Albert Sanchez-Perez, Enrique A. |
description | We show a simple model of the dynamics of a viral process based, on the determination of the Kaplan-Meier curvePof the virus. Together with the function of the newly infected individualsI, this model allows us to predict the evolution of the resulting epidemic process in terms of the numberEof the death patients plus individuals who have overcome the disease. Our model has as a starting point the representation ofEas the convolution ofIandP. It allows introducing information about latent patients-patients who have already been cured but are still potentially infectious, and re-infected individuals. We also provide three methods for the estimation ofPusing real data, all of them based on the minimization of the quadratic error: the exact solution using the associated Lagrangian function and Karush-Kuhn-Tucker conditions, a Monte Carlo computational scheme acting on the total set of local minima, and a genetic algorithm for the approximation of the global minima. Although the calculation of the exact solutions of all the linear systems provided by the use of the Lagrangian naturally gives the best optimization result, the huge number of such systems that appear when the time variable increases makes it necessary to use numerical methods. We have chosen the genetic algorithms. Indeed, we show that the results obtained in this way provide good solutions for the model. |
doi_str_mv | 10.3390/math8081260 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000564858600001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_404d5affbf09433cb0cfb05a858202a4</doaj_id><sourcerecordid>2430602873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-d0440bbcf95a355a4c92ea2073aa66db3427e311659a50353d86bf44ebd63bb13</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhiNEJarSE3_AEkcUcPyV5AjpUipacSicrbE9pl5l48V2ivrv8XZR6ZE5eKzRM6_H8zbNm46-53ykH3ZQ7gY6dEzRF80pY6xv-1p_-ez-qjnPeUtrjB0fxHja3G7u47yWEBdyEx3OxMdENvvgcBcsuQgZIWMmn-rpSIXKHZKvsJ9haW8wYCLTmu6RXGDBtAsLHJReNyce5oznf_NZ8-Pz5vv0pb3-dnk1fbxuLVeitI4KQY2xfpTApQRhR4bAaM8BlHKGC9Yj7zolR5CUS-4GZbwQaJzixnT8rLk66roIW71PYQfpQUcI-rEQ008NqQQ7oxZUOAneG09Hwbk11HpDJQxyYJSBqFpvj1r7FH-tmIvexjUtdXzNBKeKsqHnlXp3pGyKOSf0T692VB9M0M9M-Ef_RhN9tgEXi08d1QSpRB1AHfw4_Gb4f3oK5XHVU1yXwv8ApSmZaQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430602873</pqid></control><display><type>article</type><title>Evolution Model for Epidemic Diseases Based on the Kaplan-Meier Curve Determination</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><creator>Calabuig, Jose M. ; Garcia-Raffi, Luis M. ; Garcia-Valiente, Albert ; Sanchez-Perez, Enrique A.</creator><creatorcontrib>Calabuig, Jose M. ; Garcia-Raffi, Luis M. ; Garcia-Valiente, Albert ; Sanchez-Perez, Enrique A.</creatorcontrib><description>We show a simple model of the dynamics of a viral process based, on the determination of the Kaplan-Meier curvePof the virus. Together with the function of the newly infected individualsI, this model allows us to predict the evolution of the resulting epidemic process in terms of the numberEof the death patients plus individuals who have overcome the disease. Our model has as a starting point the representation ofEas the convolution ofIandP. It allows introducing information about latent patients-patients who have already been cured but are still potentially infectious, and re-infected individuals. We also provide three methods for the estimation ofPusing real data, all of them based on the minimization of the quadratic error: the exact solution using the associated Lagrangian function and Karush-Kuhn-Tucker conditions, a Monte Carlo computational scheme acting on the total set of local minima, and a genetic algorithm for the approximation of the global minima. Although the calculation of the exact solutions of all the linear systems provided by the use of the Lagrangian naturally gives the best optimization result, the huge number of such systems that appear when the time variable increases makes it necessary to use numerical methods. We have chosen the genetic algorithms. Indeed, we show that the results obtained in this way provide good solutions for the model.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math8081260</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Computer simulation ; Convolution ; Coronaviruses ; COVID-19 ; Decision making ; Disease transmission ; epidemic ; Epidemics ; Evolution ; Exact solutions ; Food science ; Genetic algorithms ; Infections ; Kaplan-Meier ; Kuhn-Tucker method ; Lagrangian function ; Linear systems ; Mathematics ; Methods ; Minima ; Numerical methods ; Optimization ; Pandemics ; Physical Sciences ; quadratic ; Science & Technology ; survival ; Variables ; Viral infections ; Viruses</subject><ispartof>Mathematics (Basel), 2020-08, Vol.8 (8), p.1260, Article 1260</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000564858600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c364t-d0440bbcf95a355a4c92ea2073aa66db3427e311659a50353d86bf44ebd63bb13</citedby><cites>FETCH-LOGICAL-c364t-d0440bbcf95a355a4c92ea2073aa66db3427e311659a50353d86bf44ebd63bb13</cites><orcidid>0000-0001-8398-8664 ; 0000-0001-8854-3154 ; 0000-0002-0444-7251 ; 0000-0003-3985-8453</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,27928,27929</link.rule.ids></links><search><creatorcontrib>Calabuig, Jose M.</creatorcontrib><creatorcontrib>Garcia-Raffi, Luis M.</creatorcontrib><creatorcontrib>Garcia-Valiente, Albert</creatorcontrib><creatorcontrib>Sanchez-Perez, Enrique A.</creatorcontrib><title>Evolution Model for Epidemic Diseases Based on the Kaplan-Meier Curve Determination</title><title>Mathematics (Basel)</title><addtitle>MATHEMATICS-BASEL</addtitle><description>We show a simple model of the dynamics of a viral process based, on the determination of the Kaplan-Meier curvePof the virus. Together with the function of the newly infected individualsI, this model allows us to predict the evolution of the resulting epidemic process in terms of the numberEof the death patients plus individuals who have overcome the disease. Our model has as a starting point the representation ofEas the convolution ofIandP. It allows introducing information about latent patients-patients who have already been cured but are still potentially infectious, and re-infected individuals. We also provide three methods for the estimation ofPusing real data, all of them based on the minimization of the quadratic error: the exact solution using the associated Lagrangian function and Karush-Kuhn-Tucker conditions, a Monte Carlo computational scheme acting on the total set of local minima, and a genetic algorithm for the approximation of the global minima. Although the calculation of the exact solutions of all the linear systems provided by the use of the Lagrangian naturally gives the best optimization result, the huge number of such systems that appear when the time variable increases makes it necessary to use numerical methods. We have chosen the genetic algorithms. Indeed, we show that the results obtained in this way provide good solutions for the model.</description><subject>Computer simulation</subject><subject>Convolution</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Decision making</subject><subject>Disease transmission</subject><subject>epidemic</subject><subject>Epidemics</subject><subject>Evolution</subject><subject>Exact solutions</subject><subject>Food science</subject><subject>Genetic algorithms</subject><subject>Infections</subject><subject>Kaplan-Meier</subject><subject>Kuhn-Tucker method</subject><subject>Lagrangian function</subject><subject>Linear systems</subject><subject>Mathematics</subject><subject>Methods</subject><subject>Minima</subject><subject>Numerical methods</subject><subject>Optimization</subject><subject>Pandemics</subject><subject>Physical Sciences</subject><subject>quadratic</subject><subject>Science & Technology</subject><subject>survival</subject><subject>Variables</subject><subject>Viral infections</subject><subject>Viruses</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU1v1DAQhiNEJarSE3_AEkcUcPyV5AjpUipacSicrbE9pl5l48V2ivrv8XZR6ZE5eKzRM6_H8zbNm46-53ykH3ZQ7gY6dEzRF80pY6xv-1p_-ez-qjnPeUtrjB0fxHja3G7u47yWEBdyEx3OxMdENvvgcBcsuQgZIWMmn-rpSIXKHZKvsJ9haW8wYCLTmu6RXGDBtAsLHJReNyce5oznf_NZ8-Pz5vv0pb3-dnk1fbxuLVeitI4KQY2xfpTApQRhR4bAaM8BlHKGC9Yj7zolR5CUS-4GZbwQaJzixnT8rLk66roIW71PYQfpQUcI-rEQ008NqQQ7oxZUOAneG09Hwbk11HpDJQxyYJSBqFpvj1r7FH-tmIvexjUtdXzNBKeKsqHnlXp3pGyKOSf0T692VB9M0M9M-Ef_RhN9tgEXi08d1QSpRB1AHfw4_Gb4f3oK5XHVU1yXwv8ApSmZaQ</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Calabuig, Jose M.</creator><creator>Garcia-Raffi, Luis M.</creator><creator>Garcia-Valiente, Albert</creator><creator>Sanchez-Perez, Enrique A.</creator><general>Mdpi</general><general>MDPI AG</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8398-8664</orcidid><orcidid>https://orcid.org/0000-0001-8854-3154</orcidid><orcidid>https://orcid.org/0000-0002-0444-7251</orcidid><orcidid>https://orcid.org/0000-0003-3985-8453</orcidid></search><sort><creationdate>20200801</creationdate><title>Evolution Model for Epidemic Diseases Based on the Kaplan-Meier Curve Determination</title><author>Calabuig, Jose M. ; Garcia-Raffi, Luis M. ; Garcia-Valiente, Albert ; Sanchez-Perez, Enrique A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-d0440bbcf95a355a4c92ea2073aa66db3427e311659a50353d86bf44ebd63bb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>Convolution</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Decision making</topic><topic>Disease transmission</topic><topic>epidemic</topic><topic>Epidemics</topic><topic>Evolution</topic><topic>Exact solutions</topic><topic>Food science</topic><topic>Genetic algorithms</topic><topic>Infections</topic><topic>Kaplan-Meier</topic><topic>Kuhn-Tucker method</topic><topic>Lagrangian function</topic><topic>Linear systems</topic><topic>Mathematics</topic><topic>Methods</topic><topic>Minima</topic><topic>Numerical methods</topic><topic>Optimization</topic><topic>Pandemics</topic><topic>Physical Sciences</topic><topic>quadratic</topic><topic>Science & Technology</topic><topic>survival</topic><topic>Variables</topic><topic>Viral infections</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calabuig, Jose M.</creatorcontrib><creatorcontrib>Garcia-Raffi, Luis M.</creatorcontrib><creatorcontrib>Garcia-Valiente, Albert</creatorcontrib><creatorcontrib>Sanchez-Perez, Enrique A.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calabuig, Jose M.</au><au>Garcia-Raffi, Luis M.</au><au>Garcia-Valiente, Albert</au><au>Sanchez-Perez, Enrique A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution Model for Epidemic Diseases Based on the Kaplan-Meier Curve Determination</atitle><jtitle>Mathematics (Basel)</jtitle><stitle>MATHEMATICS-BASEL</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>8</volume><issue>8</issue><spage>1260</spage><pages>1260-</pages><artnum>1260</artnum><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>We show a simple model of the dynamics of a viral process based, on the determination of the Kaplan-Meier curvePof the virus. Together with the function of the newly infected individualsI, this model allows us to predict the evolution of the resulting epidemic process in terms of the numberEof the death patients plus individuals who have overcome the disease. Our model has as a starting point the representation ofEas the convolution ofIandP. It allows introducing information about latent patients-patients who have already been cured but are still potentially infectious, and re-infected individuals. We also provide three methods for the estimation ofPusing real data, all of them based on the minimization of the quadratic error: the exact solution using the associated Lagrangian function and Karush-Kuhn-Tucker conditions, a Monte Carlo computational scheme acting on the total set of local minima, and a genetic algorithm for the approximation of the global minima. Although the calculation of the exact solutions of all the linear systems provided by the use of the Lagrangian naturally gives the best optimization result, the huge number of such systems that appear when the time variable increases makes it necessary to use numerical methods. We have chosen the genetic algorithms. Indeed, we show that the results obtained in this way provide good solutions for the model.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/math8081260</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-8398-8664</orcidid><orcidid>https://orcid.org/0000-0001-8854-3154</orcidid><orcidid>https://orcid.org/0000-0002-0444-7251</orcidid><orcidid>https://orcid.org/0000-0003-3985-8453</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-7390 |
ispartof | Mathematics (Basel), 2020-08, Vol.8 (8), p.1260, Article 1260 |
issn | 2227-7390 2227-7390 |
language | eng |
recordid | cdi_webofscience_primary_000564858600001 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals |
subjects | Computer simulation Convolution Coronaviruses COVID-19 Decision making Disease transmission epidemic Epidemics Evolution Exact solutions Food science Genetic algorithms Infections Kaplan-Meier Kuhn-Tucker method Lagrangian function Linear systems Mathematics Methods Minima Numerical methods Optimization Pandemics Physical Sciences quadratic Science & Technology survival Variables Viral infections Viruses |
title | Evolution Model for Epidemic Diseases Based on the Kaplan-Meier Curve Determination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A15%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20Model%20for%20Epidemic%20Diseases%20Based%20on%20the%20Kaplan-Meier%20Curve%20Determination&rft.jtitle=Mathematics%20(Basel)&rft.au=Calabuig,%20Jose%20M.&rft.date=2020-08-01&rft.volume=8&rft.issue=8&rft.spage=1260&rft.pages=1260-&rft.artnum=1260&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math8081260&rft_dat=%3Cproquest_webof%3E2430602873%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430602873&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_404d5affbf09433cb0cfb05a858202a4&rfr_iscdi=true |