A projective chirp based stair representation and detection from monocular images and its application for the visually impaired
•Introducing a projective chirp model for staircasess structure representation.•Proposing an iterative algorithm for staircases detection from monocular images.•Validating performances of the proposed method on benchmark and artificial datasets.•Deployment of a staircase alarm system supporting blin...
Gespeichert in:
Veröffentlicht in: | Pattern recognition letters 2020-09, Vol.137, p.17-26 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26 |
---|---|
container_issue | |
container_start_page | 17 |
container_title | Pattern recognition letters |
container_volume | 137 |
creator | Vu, Hai Hoang, Van-Nam Le, Thi-Lan Tran, Thanh-Hai Nguyen, Thi Thuy |
description | •Introducing a projective chirp model for staircasess structure representation.•Proposing an iterative algorithm for staircases detection from monocular images.•Validating performances of the proposed method on benchmark and artificial datasets.•Deployment of a staircase alarm system supporting blind people in indoor environment.
The most prominent characteristic of a stair is that it has rigid form with periodic pattern of its steps. In this work, we exploit this periodic characteristic in view of geometrical rules. As a stair consists of equidistant nosing lines, under a perspective projection of camera, the projection of these lines on an image follows a projective chirplet transform. We propose to detect a stair by finding a group of lines that best satisfies a projective chirp model. The most advantage of the proposed techniques is that some missed noising lines and thus whole stair could be recovered. We validate the proposed method on both artificial and real datasets. The experimental results show a higher detection rate on different datasets. Finally, a real application alarming the visually impaired about stairs in indoor environments has been conducted and obtained 88.37% of accuracy. The implementations and datasets are made publicly available. |
doi_str_mv | 10.1016/j.patrec.2019.03.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000564698700004CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016786551930087X</els_id><sourcerecordid>2449678813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-54eabfd7577c571f0b647e374a31aea480f387de0dbc8f6d6c51778ae57074933</originalsourceid><addsrcrecordid>eNqNkEFvFCEYQImxiWvbf-CBxKOZKSwMMBeTZmPVpIkXPRMGPiyT2WEEZk1P_vWyTuPR9AQk7wHfQ-gdJS0lVNyM7WJKAtvuCe1bwlpC5Cu0o0ruG8k4f412FZONEl33Br3NeSSECNarHfpzi5cUR7AlnADbh5AWPJgMDudiQsIJlgQZ5mJKiDM2s8MOyhmvJ5_iER_jHO06mYTD0fyE_JcJpa7LMgW7eT4mXB4An0JezTQ9Vnap14O7QhfeTBmun9dL9OPu0_fDl-b-2-evh9v7xjLGS9NxMIN3spPSdpJ6MggugUluGDVguCKeKemAuMEqL5ywHZVSGegkkbxn7BK93-6t0_5aIRc9xjXN9Um957wXUil6pvhG2RRzTuD1kupU6VFTos-p9ai31PqcWhOma-qqqU37DUP02QaYLfxTa-tOcNErWXeEH8LW8hDXuVT1w8vVSn_caKipTgGSfjZcbWmLdjH8_6dP6d-s1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449678813</pqid></control><display><type>article</type><title>A projective chirp based stair representation and detection from monocular images and its application for the visually impaired</title><source>Access via ScienceDirect (Elsevier)</source><creator>Vu, Hai ; Hoang, Van-Nam ; Le, Thi-Lan ; Tran, Thanh-Hai ; Nguyen, Thi Thuy</creator><creatorcontrib>Vu, Hai ; Hoang, Van-Nam ; Le, Thi-Lan ; Tran, Thanh-Hai ; Nguyen, Thi Thuy</creatorcontrib><description>•Introducing a projective chirp model for staircasess structure representation.•Proposing an iterative algorithm for staircases detection from monocular images.•Validating performances of the proposed method on benchmark and artificial datasets.•Deployment of a staircase alarm system supporting blind people in indoor environment.
The most prominent characteristic of a stair is that it has rigid form with periodic pattern of its steps. In this work, we exploit this periodic characteristic in view of geometrical rules. As a stair consists of equidistant nosing lines, under a perspective projection of camera, the projection of these lines on an image follows a projective chirplet transform. We propose to detect a stair by finding a group of lines that best satisfies a projective chirp model. The most advantage of the proposed techniques is that some missed noising lines and thus whole stair could be recovered. We validate the proposed method on both artificial and real datasets. The experimental results show a higher detection rate on different datasets. Finally, a real application alarming the visually impaired about stairs in indoor environments has been conducted and obtained 88.37% of accuracy. The implementations and datasets are made publicly available.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/j.patrec.2019.03.007</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier B.V</publisher><subject>Chirp ; Chirp pattern ; Color-based stair detection ; Computer Science ; Computer Science, Artificial Intelligence ; Datasets ; Indoor environments ; Science & Technology ; Stair modeling ; Stairways ; Technology ; Visual impairment</subject><ispartof>Pattern recognition letters, 2020-09, Vol.137, p.17-26</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Sep 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000564698700004</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c334t-54eabfd7577c571f0b647e374a31aea480f387de0dbc8f6d6c51778ae57074933</citedby><cites>FETCH-LOGICAL-c334t-54eabfd7577c571f0b647e374a31aea480f387de0dbc8f6d6c51778ae57074933</cites><orcidid>0000-0003-2880-4417 ; 0000-0002-0612-6267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.patrec.2019.03.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids></links><search><creatorcontrib>Vu, Hai</creatorcontrib><creatorcontrib>Hoang, Van-Nam</creatorcontrib><creatorcontrib>Le, Thi-Lan</creatorcontrib><creatorcontrib>Tran, Thanh-Hai</creatorcontrib><creatorcontrib>Nguyen, Thi Thuy</creatorcontrib><title>A projective chirp based stair representation and detection from monocular images and its application for the visually impaired</title><title>Pattern recognition letters</title><addtitle>PATTERN RECOGN LETT</addtitle><description>•Introducing a projective chirp model for staircasess structure representation.•Proposing an iterative algorithm for staircases detection from monocular images.•Validating performances of the proposed method on benchmark and artificial datasets.•Deployment of a staircase alarm system supporting blind people in indoor environment.
The most prominent characteristic of a stair is that it has rigid form with periodic pattern of its steps. In this work, we exploit this periodic characteristic in view of geometrical rules. As a stair consists of equidistant nosing lines, under a perspective projection of camera, the projection of these lines on an image follows a projective chirplet transform. We propose to detect a stair by finding a group of lines that best satisfies a projective chirp model. The most advantage of the proposed techniques is that some missed noising lines and thus whole stair could be recovered. We validate the proposed method on both artificial and real datasets. The experimental results show a higher detection rate on different datasets. Finally, a real application alarming the visually impaired about stairs in indoor environments has been conducted and obtained 88.37% of accuracy. The implementations and datasets are made publicly available.</description><subject>Chirp</subject><subject>Chirp pattern</subject><subject>Color-based stair detection</subject><subject>Computer Science</subject><subject>Computer Science, Artificial Intelligence</subject><subject>Datasets</subject><subject>Indoor environments</subject><subject>Science & Technology</subject><subject>Stair modeling</subject><subject>Stairways</subject><subject>Technology</subject><subject>Visual impairment</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkEFvFCEYQImxiWvbf-CBxKOZKSwMMBeTZmPVpIkXPRMGPiyT2WEEZk1P_vWyTuPR9AQk7wHfQ-gdJS0lVNyM7WJKAtvuCe1bwlpC5Cu0o0ruG8k4f412FZONEl33Br3NeSSECNarHfpzi5cUR7AlnADbh5AWPJgMDudiQsIJlgQZ5mJKiDM2s8MOyhmvJ5_iER_jHO06mYTD0fyE_JcJpa7LMgW7eT4mXB4An0JezTQ9Vnap14O7QhfeTBmun9dL9OPu0_fDl-b-2-evh9v7xjLGS9NxMIN3spPSdpJ6MggugUluGDVguCKeKemAuMEqL5ywHZVSGegkkbxn7BK93-6t0_5aIRc9xjXN9Um957wXUil6pvhG2RRzTuD1kupU6VFTos-p9ai31PqcWhOma-qqqU37DUP02QaYLfxTa-tOcNErWXeEH8LW8hDXuVT1w8vVSn_caKipTgGSfjZcbWmLdjH8_6dP6d-s1A</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Vu, Hai</creator><creator>Hoang, Van-Nam</creator><creator>Le, Thi-Lan</creator><creator>Tran, Thanh-Hai</creator><creator>Nguyen, Thi Thuy</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Science Ltd</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TK</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2880-4417</orcidid><orcidid>https://orcid.org/0000-0002-0612-6267</orcidid></search><sort><creationdate>202009</creationdate><title>A projective chirp based stair representation and detection from monocular images and its application for the visually impaired</title><author>Vu, Hai ; Hoang, Van-Nam ; Le, Thi-Lan ; Tran, Thanh-Hai ; Nguyen, Thi Thuy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-54eabfd7577c571f0b647e374a31aea480f387de0dbc8f6d6c51778ae57074933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chirp</topic><topic>Chirp pattern</topic><topic>Color-based stair detection</topic><topic>Computer Science</topic><topic>Computer Science, Artificial Intelligence</topic><topic>Datasets</topic><topic>Indoor environments</topic><topic>Science & Technology</topic><topic>Stair modeling</topic><topic>Stairways</topic><topic>Technology</topic><topic>Visual impairment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vu, Hai</creatorcontrib><creatorcontrib>Hoang, Van-Nam</creatorcontrib><creatorcontrib>Le, Thi-Lan</creatorcontrib><creatorcontrib>Tran, Thanh-Hai</creatorcontrib><creatorcontrib>Nguyen, Thi Thuy</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vu, Hai</au><au>Hoang, Van-Nam</au><au>Le, Thi-Lan</au><au>Tran, Thanh-Hai</au><au>Nguyen, Thi Thuy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A projective chirp based stair representation and detection from monocular images and its application for the visually impaired</atitle><jtitle>Pattern recognition letters</jtitle><stitle>PATTERN RECOGN LETT</stitle><date>2020-09</date><risdate>2020</risdate><volume>137</volume><spage>17</spage><epage>26</epage><pages>17-26</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><abstract>•Introducing a projective chirp model for staircasess structure representation.•Proposing an iterative algorithm for staircases detection from monocular images.•Validating performances of the proposed method on benchmark and artificial datasets.•Deployment of a staircase alarm system supporting blind people in indoor environment.
The most prominent characteristic of a stair is that it has rigid form with periodic pattern of its steps. In this work, we exploit this periodic characteristic in view of geometrical rules. As a stair consists of equidistant nosing lines, under a perspective projection of camera, the projection of these lines on an image follows a projective chirplet transform. We propose to detect a stair by finding a group of lines that best satisfies a projective chirp model. The most advantage of the proposed techniques is that some missed noising lines and thus whole stair could be recovered. We validate the proposed method on both artificial and real datasets. The experimental results show a higher detection rate on different datasets. Finally, a real application alarming the visually impaired about stairs in indoor environments has been conducted and obtained 88.37% of accuracy. The implementations and datasets are made publicly available.</abstract><cop>AMSTERDAM</cop><pub>Elsevier B.V</pub><doi>10.1016/j.patrec.2019.03.007</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2880-4417</orcidid><orcidid>https://orcid.org/0000-0002-0612-6267</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8655 |
ispartof | Pattern recognition letters, 2020-09, Vol.137, p.17-26 |
issn | 0167-8655 1872-7344 |
language | eng |
recordid | cdi_webofscience_primary_000564698700004CitationCount |
source | Access via ScienceDirect (Elsevier) |
subjects | Chirp Chirp pattern Color-based stair detection Computer Science Computer Science, Artificial Intelligence Datasets Indoor environments Science & Technology Stair modeling Stairways Technology Visual impairment |
title | A projective chirp based stair representation and detection from monocular images and its application for the visually impaired |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A00%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20projective%20chirp%20based%20stair%20representation%20and%20detection%20from%20monocular%20images%20and%20its%20application%20for%20the%20visually%20impaired&rft.jtitle=Pattern%20recognition%20letters&rft.au=Vu,%20Hai&rft.date=2020-09&rft.volume=137&rft.spage=17&rft.epage=26&rft.pages=17-26&rft.issn=0167-8655&rft.eissn=1872-7344&rft_id=info:doi/10.1016/j.patrec.2019.03.007&rft_dat=%3Cproquest_webof%3E2449678813%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449678813&rft_id=info:pmid/&rft_els_id=S016786551930087X&rfr_iscdi=true |