A fundamental look at electrocatalytic sulfur reduction reaction
The fundamental kinetics of the electrocatalytic sulfur reduction reaction (SRR), a complex 16-electron conversion process in lithium–sulfur batteries, is so far insufficiently explored. Here, by directly profiling the activation energies in the multistep SRR, we reveal that the initial reduction of...
Gespeichert in:
Veröffentlicht in: | Nature catalysis 2020-09, Vol.3 (9), p.762-770 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 770 |
---|---|
container_issue | 9 |
container_start_page | 762 |
container_title | Nature catalysis |
container_volume | 3 |
creator | Peng, Lele Wei, Ziyang Wan, Chengzhang Li, Jing Chen, Zhuo Zhu, Dan Baumann, Daniel Liu, Haotian Allen, Christopher S. Xu, Xiang Kirkland, Angus I. Shakir, Imran Almutairi, Zeyad Tolbert, Sarah Dunn, Bruce Huang, Yu Sautet, Philippe Duan, Xiangfeng |
description | The fundamental kinetics of the electrocatalytic sulfur reduction reaction (SRR), a complex 16-electron conversion process in lithium–sulfur batteries, is so far insufficiently explored. Here, by directly profiling the activation energies in the multistep SRR, we reveal that the initial reduction of sulfur to the soluble polysulfides is relatively easy owing to the low activation energy, whereas the subsequent conversion of the polysulfides into the insoluble Li
2
S
2
/Li
2
S has a much higher activation energy, contributing to the accumulation of polysulfides and exacerbating the polysulfide shuttling effect. We use heteroatom-doped graphene as a model system to explore electrocatalytic SRR. We show that nitrogen and sulfur dual-doped graphene considerably reduces the activation energy to improve SRR kinetics. Density functional calculations confirm that the doping tunes the
p
-band centre of the active carbons for an optimal adsorption strength of intermediates and electroactivity. This study establishes electrocatalysis as a promising pathway to tackle the fundamental challenges facing lithium–sulfur batteries.
The fundamental kinetics of the electrocatalytic sulfur reduction reaction, a complex 16-electron conversion process in lithium–sulfur batteries, is a topic that remains largely unexplored. Here, by directly profiling the activation energies in the multi-step reaction, the authors establish how the conversion kinetics differ for each step. |
doi_str_mv | 10.1038/s41929-020-0498-x |
format | Article |
fullrecord | <record><control><sourceid>webofscience_sprin</sourceid><recordid>TN_cdi_webofscience_primary_000564491500001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>000564491500001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-a98de203f71684780201c54eec272efd7d22b3cdebc1cd31a6531888d3660fb53</originalsourceid><addsrcrecordid>eNqNkEtLxDAUhYMoOOj8AHfFrVTzbNOdQ_EFA250HdI8tGMnkSTFmX9vakVciat7bjjn5vABcIbgJYKEX0WKGtyUEMMS0oaXuwOwwCxvCDF--Esfg2WMGwghagjlsFqA61VhR6fl1rgkh2Lw_q2QqTCDUSl4JfPjPvWqiONgx1AEo0eVeu-ykl_iFBxZOUSz_J4n4Pn25qm9L9ePdw_tal0qwngqZcO1wZDYGlWc1jx3RYpRYxSusbG61hh3RGnTKaQ0QbJiBHHONakqaDtGTsD5fNfH1Iuo-mTUq_LO5aICcUjqimYTmk0q-BiDseI99FsZ9gJBMaESMyqRvxcTKrHLmYs582E6b_Nh45T5yWVWrKK0QQxO2LKb_9_d9klOjFo_upSjeI7GbHcvJoiNH4PL0P5o9wmKZ40A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A fundamental look at electrocatalytic sulfur reduction reaction</title><source>Nature</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Alma/SFX Local Collection</source><creator>Peng, Lele ; Wei, Ziyang ; Wan, Chengzhang ; Li, Jing ; Chen, Zhuo ; Zhu, Dan ; Baumann, Daniel ; Liu, Haotian ; Allen, Christopher S. ; Xu, Xiang ; Kirkland, Angus I. ; Shakir, Imran ; Almutairi, Zeyad ; Tolbert, Sarah ; Dunn, Bruce ; Huang, Yu ; Sautet, Philippe ; Duan, Xiangfeng</creator><creatorcontrib>Peng, Lele ; Wei, Ziyang ; Wan, Chengzhang ; Li, Jing ; Chen, Zhuo ; Zhu, Dan ; Baumann, Daniel ; Liu, Haotian ; Allen, Christopher S. ; Xu, Xiang ; Kirkland, Angus I. ; Shakir, Imran ; Almutairi, Zeyad ; Tolbert, Sarah ; Dunn, Bruce ; Huang, Yu ; Sautet, Philippe ; Duan, Xiangfeng ; Univ. of California, Los Angeles, CA (United States)</creatorcontrib><description>The fundamental kinetics of the electrocatalytic sulfur reduction reaction (SRR), a complex 16-electron conversion process in lithium–sulfur batteries, is so far insufficiently explored. Here, by directly profiling the activation energies in the multistep SRR, we reveal that the initial reduction of sulfur to the soluble polysulfides is relatively easy owing to the low activation energy, whereas the subsequent conversion of the polysulfides into the insoluble Li
2
S
2
/Li
2
S has a much higher activation energy, contributing to the accumulation of polysulfides and exacerbating the polysulfide shuttling effect. We use heteroatom-doped graphene as a model system to explore electrocatalytic SRR. We show that nitrogen and sulfur dual-doped graphene considerably reduces the activation energy to improve SRR kinetics. Density functional calculations confirm that the doping tunes the
p
-band centre of the active carbons for an optimal adsorption strength of intermediates and electroactivity. This study establishes electrocatalysis as a promising pathway to tackle the fundamental challenges facing lithium–sulfur batteries.
The fundamental kinetics of the electrocatalytic sulfur reduction reaction, a complex 16-electron conversion process in lithium–sulfur batteries, is a topic that remains largely unexplored. Here, by directly profiling the activation energies in the multi-step reaction, the authors establish how the conversion kinetics differ for each step.</description><identifier>ISSN: 2520-1158</identifier><identifier>EISSN: 2520-1158</identifier><identifier>DOI: 10.1038/s41929-020-0498-x</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/4077/4079/891 ; 639/638/161/886 ; batteries ; Catalysis ; Chemistry ; Chemistry and Materials Science ; Chemistry, Physical ; electrocatalysis ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Physical Sciences ; Science & Technology</subject><ispartof>Nature catalysis, 2020-09, Vol.3 (9), p.762-770</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>534</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000564491500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c358t-a98de203f71684780201c54eec272efd7d22b3cdebc1cd31a6531888d3660fb53</citedby><cites>FETCH-LOGICAL-c358t-a98de203f71684780201c54eec272efd7d22b3cdebc1cd31a6531888d3660fb53</cites><orcidid>0000-0001-8068-1990 ; 0000-0002-0671-4974 ; 0000-0002-8444-3348 ; 0000-0002-4321-6288 ; 0000-0002-6628-7142 ; 0000-0002-6353-6000 ; 0000-0002-1977-8539 ; 0000-0003-1793-0741 ; 0000-0002-6824-6037 ; 0000-0002-7295-3033 ; 0000-0002-8941-5207 ; 0000000180681990 ; 0000000243216288 ; 0000000317930741 ; 0000000206714974 ; 0000000266287142 ; 0000000263536000 ; 0000000219778539 ; 0000000284443348</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930,28253</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1803764$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Lele</creatorcontrib><creatorcontrib>Wei, Ziyang</creatorcontrib><creatorcontrib>Wan, Chengzhang</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Chen, Zhuo</creatorcontrib><creatorcontrib>Zhu, Dan</creatorcontrib><creatorcontrib>Baumann, Daniel</creatorcontrib><creatorcontrib>Liu, Haotian</creatorcontrib><creatorcontrib>Allen, Christopher S.</creatorcontrib><creatorcontrib>Xu, Xiang</creatorcontrib><creatorcontrib>Kirkland, Angus I.</creatorcontrib><creatorcontrib>Shakir, Imran</creatorcontrib><creatorcontrib>Almutairi, Zeyad</creatorcontrib><creatorcontrib>Tolbert, Sarah</creatorcontrib><creatorcontrib>Dunn, Bruce</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Sautet, Philippe</creatorcontrib><creatorcontrib>Duan, Xiangfeng</creatorcontrib><creatorcontrib>Univ. of California, Los Angeles, CA (United States)</creatorcontrib><title>A fundamental look at electrocatalytic sulfur reduction reaction</title><title>Nature catalysis</title><addtitle>Nat Catal</addtitle><addtitle>NAT CATAL</addtitle><description>The fundamental kinetics of the electrocatalytic sulfur reduction reaction (SRR), a complex 16-electron conversion process in lithium–sulfur batteries, is so far insufficiently explored. Here, by directly profiling the activation energies in the multistep SRR, we reveal that the initial reduction of sulfur to the soluble polysulfides is relatively easy owing to the low activation energy, whereas the subsequent conversion of the polysulfides into the insoluble Li
2
S
2
/Li
2
S has a much higher activation energy, contributing to the accumulation of polysulfides and exacerbating the polysulfide shuttling effect. We use heteroatom-doped graphene as a model system to explore electrocatalytic SRR. We show that nitrogen and sulfur dual-doped graphene considerably reduces the activation energy to improve SRR kinetics. Density functional calculations confirm that the doping tunes the
p
-band centre of the active carbons for an optimal adsorption strength of intermediates and electroactivity. This study establishes electrocatalysis as a promising pathway to tackle the fundamental challenges facing lithium–sulfur batteries.
The fundamental kinetics of the electrocatalytic sulfur reduction reaction, a complex 16-electron conversion process in lithium–sulfur batteries, is a topic that remains largely unexplored. Here, by directly profiling the activation energies in the multi-step reaction, the authors establish how the conversion kinetics differ for each step.</description><subject>639/4077/4079/891</subject><subject>639/638/161/886</subject><subject>batteries</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry, Physical</subject><subject>electrocatalysis</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Physical Sciences</subject><subject>Science & Technology</subject><issn>2520-1158</issn><issn>2520-1158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkEtLxDAUhYMoOOj8AHfFrVTzbNOdQ_EFA250HdI8tGMnkSTFmX9vakVciat7bjjn5vABcIbgJYKEX0WKGtyUEMMS0oaXuwOwwCxvCDF--Esfg2WMGwghagjlsFqA61VhR6fl1rgkh2Lw_q2QqTCDUSl4JfPjPvWqiONgx1AEo0eVeu-ykl_iFBxZOUSz_J4n4Pn25qm9L9ePdw_tal0qwngqZcO1wZDYGlWc1jx3RYpRYxSusbG61hh3RGnTKaQ0QbJiBHHONakqaDtGTsD5fNfH1Iuo-mTUq_LO5aICcUjqimYTmk0q-BiDseI99FsZ9gJBMaESMyqRvxcTKrHLmYs582E6b_Nh45T5yWVWrKK0QQxO2LKb_9_d9klOjFo_upSjeI7GbHcvJoiNH4PL0P5o9wmKZ40A</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Peng, Lele</creator><creator>Wei, Ziyang</creator><creator>Wan, Chengzhang</creator><creator>Li, Jing</creator><creator>Chen, Zhuo</creator><creator>Zhu, Dan</creator><creator>Baumann, Daniel</creator><creator>Liu, Haotian</creator><creator>Allen, Christopher S.</creator><creator>Xu, Xiang</creator><creator>Kirkland, Angus I.</creator><creator>Shakir, Imran</creator><creator>Almutairi, Zeyad</creator><creator>Tolbert, Sarah</creator><creator>Dunn, Bruce</creator><creator>Huang, Yu</creator><creator>Sautet, Philippe</creator><creator>Duan, Xiangfeng</creator><general>Nature Publishing Group UK</general><general>Springer Nature</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8068-1990</orcidid><orcidid>https://orcid.org/0000-0002-0671-4974</orcidid><orcidid>https://orcid.org/0000-0002-8444-3348</orcidid><orcidid>https://orcid.org/0000-0002-4321-6288</orcidid><orcidid>https://orcid.org/0000-0002-6628-7142</orcidid><orcidid>https://orcid.org/0000-0002-6353-6000</orcidid><orcidid>https://orcid.org/0000-0002-1977-8539</orcidid><orcidid>https://orcid.org/0000-0003-1793-0741</orcidid><orcidid>https://orcid.org/0000-0002-6824-6037</orcidid><orcidid>https://orcid.org/0000-0002-7295-3033</orcidid><orcidid>https://orcid.org/0000-0002-8941-5207</orcidid><orcidid>https://orcid.org/0000000180681990</orcidid><orcidid>https://orcid.org/0000000243216288</orcidid><orcidid>https://orcid.org/0000000317930741</orcidid><orcidid>https://orcid.org/0000000206714974</orcidid><orcidid>https://orcid.org/0000000266287142</orcidid><orcidid>https://orcid.org/0000000263536000</orcidid><orcidid>https://orcid.org/0000000219778539</orcidid><orcidid>https://orcid.org/0000000284443348</orcidid></search><sort><creationdate>20200901</creationdate><title>A fundamental look at electrocatalytic sulfur reduction reaction</title><author>Peng, Lele ; Wei, Ziyang ; Wan, Chengzhang ; Li, Jing ; Chen, Zhuo ; Zhu, Dan ; Baumann, Daniel ; Liu, Haotian ; Allen, Christopher S. ; Xu, Xiang ; Kirkland, Angus I. ; Shakir, Imran ; Almutairi, Zeyad ; Tolbert, Sarah ; Dunn, Bruce ; Huang, Yu ; Sautet, Philippe ; Duan, Xiangfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-a98de203f71684780201c54eec272efd7d22b3cdebc1cd31a6531888d3660fb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/4077/4079/891</topic><topic>639/638/161/886</topic><topic>batteries</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry, Physical</topic><topic>electrocatalysis</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Physical Sciences</topic><topic>Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Lele</creatorcontrib><creatorcontrib>Wei, Ziyang</creatorcontrib><creatorcontrib>Wan, Chengzhang</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Chen, Zhuo</creatorcontrib><creatorcontrib>Zhu, Dan</creatorcontrib><creatorcontrib>Baumann, Daniel</creatorcontrib><creatorcontrib>Liu, Haotian</creatorcontrib><creatorcontrib>Allen, Christopher S.</creatorcontrib><creatorcontrib>Xu, Xiang</creatorcontrib><creatorcontrib>Kirkland, Angus I.</creatorcontrib><creatorcontrib>Shakir, Imran</creatorcontrib><creatorcontrib>Almutairi, Zeyad</creatorcontrib><creatorcontrib>Tolbert, Sarah</creatorcontrib><creatorcontrib>Dunn, Bruce</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Sautet, Philippe</creatorcontrib><creatorcontrib>Duan, Xiangfeng</creatorcontrib><creatorcontrib>Univ. of California, Los Angeles, CA (United States)</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Lele</au><au>Wei, Ziyang</au><au>Wan, Chengzhang</au><au>Li, Jing</au><au>Chen, Zhuo</au><au>Zhu, Dan</au><au>Baumann, Daniel</au><au>Liu, Haotian</au><au>Allen, Christopher S.</au><au>Xu, Xiang</au><au>Kirkland, Angus I.</au><au>Shakir, Imran</au><au>Almutairi, Zeyad</au><au>Tolbert, Sarah</au><au>Dunn, Bruce</au><au>Huang, Yu</au><au>Sautet, Philippe</au><au>Duan, Xiangfeng</au><aucorp>Univ. of California, Los Angeles, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fundamental look at electrocatalytic sulfur reduction reaction</atitle><jtitle>Nature catalysis</jtitle><stitle>Nat Catal</stitle><stitle>NAT CATAL</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>3</volume><issue>9</issue><spage>762</spage><epage>770</epage><pages>762-770</pages><issn>2520-1158</issn><eissn>2520-1158</eissn><abstract>The fundamental kinetics of the electrocatalytic sulfur reduction reaction (SRR), a complex 16-electron conversion process in lithium–sulfur batteries, is so far insufficiently explored. Here, by directly profiling the activation energies in the multistep SRR, we reveal that the initial reduction of sulfur to the soluble polysulfides is relatively easy owing to the low activation energy, whereas the subsequent conversion of the polysulfides into the insoluble Li
2
S
2
/Li
2
S has a much higher activation energy, contributing to the accumulation of polysulfides and exacerbating the polysulfide shuttling effect. We use heteroatom-doped graphene as a model system to explore electrocatalytic SRR. We show that nitrogen and sulfur dual-doped graphene considerably reduces the activation energy to improve SRR kinetics. Density functional calculations confirm that the doping tunes the
p
-band centre of the active carbons for an optimal adsorption strength of intermediates and electroactivity. This study establishes electrocatalysis as a promising pathway to tackle the fundamental challenges facing lithium–sulfur batteries.
The fundamental kinetics of the electrocatalytic sulfur reduction reaction, a complex 16-electron conversion process in lithium–sulfur batteries, is a topic that remains largely unexplored. Here, by directly profiling the activation energies in the multi-step reaction, the authors establish how the conversion kinetics differ for each step.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41929-020-0498-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8068-1990</orcidid><orcidid>https://orcid.org/0000-0002-0671-4974</orcidid><orcidid>https://orcid.org/0000-0002-8444-3348</orcidid><orcidid>https://orcid.org/0000-0002-4321-6288</orcidid><orcidid>https://orcid.org/0000-0002-6628-7142</orcidid><orcidid>https://orcid.org/0000-0002-6353-6000</orcidid><orcidid>https://orcid.org/0000-0002-1977-8539</orcidid><orcidid>https://orcid.org/0000-0003-1793-0741</orcidid><orcidid>https://orcid.org/0000-0002-6824-6037</orcidid><orcidid>https://orcid.org/0000-0002-7295-3033</orcidid><orcidid>https://orcid.org/0000-0002-8941-5207</orcidid><orcidid>https://orcid.org/0000000180681990</orcidid><orcidid>https://orcid.org/0000000243216288</orcidid><orcidid>https://orcid.org/0000000317930741</orcidid><orcidid>https://orcid.org/0000000206714974</orcidid><orcidid>https://orcid.org/0000000266287142</orcidid><orcidid>https://orcid.org/0000000263536000</orcidid><orcidid>https://orcid.org/0000000219778539</orcidid><orcidid>https://orcid.org/0000000284443348</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2520-1158 |
ispartof | Nature catalysis, 2020-09, Vol.3 (9), p.762-770 |
issn | 2520-1158 2520-1158 |
language | eng |
recordid | cdi_webofscience_primary_000564491500001 |
source | Nature; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection |
subjects | 639/4077/4079/891 639/638/161/886 batteries Catalysis Chemistry Chemistry and Materials Science Chemistry, Physical electrocatalysis INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Physical Sciences Science & Technology |
title | A fundamental look at electrocatalytic sulfur reduction reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A38%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-webofscience_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fundamental%20look%20at%20electrocatalytic%20sulfur%20reduction%20reaction&rft.jtitle=Nature%20catalysis&rft.au=Peng,%20Lele&rft.aucorp=Univ.%20of%20California,%20Los%20Angeles,%20CA%20(United%20States)&rft.date=2020-09-01&rft.volume=3&rft.issue=9&rft.spage=762&rft.epage=770&rft.pages=762-770&rft.issn=2520-1158&rft.eissn=2520-1158&rft_id=info:doi/10.1038/s41929-020-0498-x&rft_dat=%3Cwebofscience_sprin%3E000564491500001%3C/webofscience_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |