Dual Energy Transfer Pathways from an Antenna Ligand to Lanthanide Ion in Trivalent Europium Complexes with Phosphine-Oxide Bridges

Trivalent europium (Eu3+) complexes are attractive materials for luminescence applications if energy transfer from antenna ligands to the lanthanide ion is efficient. However, the microscopic mechanisms of the transfer remain elusive, and fundamental physical chemistry questions still require answer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2020-08, Vol.124 (33), p.6601-6606
Hauptverfasser: Miyazaki, Shiori, Miyata, Kiyoshi, Sakamoto, Haruna, Suzue, Fumiya, Kitagawa, Yuichi, Hasegawa, Yasuchika, Onda, Ken
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6606
container_issue 33
container_start_page 6601
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 124
creator Miyazaki, Shiori
Miyata, Kiyoshi
Sakamoto, Haruna
Suzue, Fumiya
Kitagawa, Yuichi
Hasegawa, Yasuchika
Onda, Ken
description Trivalent europium (Eu3+) complexes are attractive materials for luminescence applications if energy transfer from antenna ligands to the lanthanide ion is efficient. However, the microscopic mechanisms of the transfer remain elusive, and fundamental physical chemistry questions still require answers. We track the energy transfer processes in a luminescent complex Eu­(hfa)3(DPPTO)2 (hfa, hexafluoro­acetylacetonate; DPPTO, 2-diphenyl­phosphoryl­triphenylene) using time-resolved photoluminescence spectroscopy. In addition to the conventional energy transfer pathway through the T1 state of the ligands, we discovered ultrafast energy transfer pathway directly from the singlet excited states of the ligands to the 5D1 state of Eu3+. The short time scale of the energy transfer (3 ns, 200 ns) results in its high photoluminescence quantum yield. The discovery of the distinct energy transfer pathways from a single chromophore is important for establishing design strategies of luminescent complexes.
doi_str_mv 10.1021/acs.jpca.0c02224
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000563734400003CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434054063</sourcerecordid><originalsourceid>FETCH-LOGICAL-a313t-af373a419e0dadb30d5ab78d854c3209bc462bbe4802540a1b13a9be5fae24823</originalsourceid><addsrcrecordid>eNqNkT1v1EAQhi0EIiGhp9wSifiY_bDPLoM5INJJSRFqa2yPzxvZu2Z3zeXq_HH2chEdEtW8xfuMRs8kyQcOKw6Cf8bWrx7mFlfQghBCvUrOeSYgzQTPXscMRZlmuSzPknfePwAAl0K9Tc6kWBd5nsN58vR1wZFtDLndgd07NL4nx-4wDHs8eNY7OzE07NoEMgbZVu_QdCxYtkUTBjS6I3ZjDdMm0vo3jmQC2yzOznqZWGWneaRH8myvw8DuBuvnQRtKbx-P4Benux35y-RNj6On9y_zIvn5bXNf_Ui3t99vquttipLLkGIv1xIVLwk67BoJXYbNuuiKTLVSQNm0KhdNQ6oAkSlA3nCJZUNZjyRUIeRF8vG0d3b210I-1JP2LY0jGrKLr4WSCiKZy1iFU7V11ntHfT07PaE71Bzqo_o6qq-P6usX9REpTsieGtv7VpNp6S8W3cdHrKVSMYGsdMCgransYkJEP_0_GttXp_bzCXZxJkr7911_ALxOp-4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434054063</pqid></control><display><type>article</type><title>Dual Energy Transfer Pathways from an Antenna Ligand to Lanthanide Ion in Trivalent Europium Complexes with Phosphine-Oxide Bridges</title><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Miyazaki, Shiori ; Miyata, Kiyoshi ; Sakamoto, Haruna ; Suzue, Fumiya ; Kitagawa, Yuichi ; Hasegawa, Yasuchika ; Onda, Ken</creator><creatorcontrib>Miyazaki, Shiori ; Miyata, Kiyoshi ; Sakamoto, Haruna ; Suzue, Fumiya ; Kitagawa, Yuichi ; Hasegawa, Yasuchika ; Onda, Ken</creatorcontrib><description>Trivalent europium (Eu3+) complexes are attractive materials for luminescence applications if energy transfer from antenna ligands to the lanthanide ion is efficient. However, the microscopic mechanisms of the transfer remain elusive, and fundamental physical chemistry questions still require answers. We track the energy transfer processes in a luminescent complex Eu­(hfa)3(DPPTO)2 (hfa, hexafluoro­acetylacetonate; DPPTO, 2-diphenyl­phosphoryl­triphenylene) using time-resolved photoluminescence spectroscopy. In addition to the conventional energy transfer pathway through the T1 state of the ligands, we discovered ultrafast energy transfer pathway directly from the singlet excited states of the ligands to the 5D1 state of Eu3+. The short time scale of the energy transfer (3 ns, 200 ns) results in its high photoluminescence quantum yield. The discovery of the distinct energy transfer pathways from a single chromophore is important for establishing design strategies of luminescent complexes.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.0c02224</identifier><identifier>PMID: 32786660</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>A: Kinetics, Dynamics, Photochemistry, and Excited States ; Chemistry ; Chemistry, Physical ; Physical Sciences ; Physics ; Physics, Atomic, Molecular &amp; Chemical ; Science &amp; Technology</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2020-08, Vol.124 (33), p.6601-6606</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000563734400003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a313t-af373a419e0dadb30d5ab78d854c3209bc462bbe4802540a1b13a9be5fae24823</citedby><cites>FETCH-LOGICAL-a313t-af373a419e0dadb30d5ab78d854c3209bc462bbe4802540a1b13a9be5fae24823</cites><orcidid>0000-0003-1487-2531 ; 0000-0002-6622-8011 ; 0000-0001-6748-1337 ; 0000-0003-1724-2009</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.0c02224$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.0c02224$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,28253,56743,56793</link.rule.ids></links><search><creatorcontrib>Miyazaki, Shiori</creatorcontrib><creatorcontrib>Miyata, Kiyoshi</creatorcontrib><creatorcontrib>Sakamoto, Haruna</creatorcontrib><creatorcontrib>Suzue, Fumiya</creatorcontrib><creatorcontrib>Kitagawa, Yuichi</creatorcontrib><creatorcontrib>Hasegawa, Yasuchika</creatorcontrib><creatorcontrib>Onda, Ken</creatorcontrib><title>Dual Energy Transfer Pathways from an Antenna Ligand to Lanthanide Ion in Trivalent Europium Complexes with Phosphine-Oxide Bridges</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J PHYS CHEM A</addtitle><addtitle>J. Phys. Chem. A</addtitle><description>Trivalent europium (Eu3+) complexes are attractive materials for luminescence applications if energy transfer from antenna ligands to the lanthanide ion is efficient. However, the microscopic mechanisms of the transfer remain elusive, and fundamental physical chemistry questions still require answers. We track the energy transfer processes in a luminescent complex Eu­(hfa)3(DPPTO)2 (hfa, hexafluoro­acetylacetonate; DPPTO, 2-diphenyl­phosphoryl­triphenylene) using time-resolved photoluminescence spectroscopy. In addition to the conventional energy transfer pathway through the T1 state of the ligands, we discovered ultrafast energy transfer pathway directly from the singlet excited states of the ligands to the 5D1 state of Eu3+. The short time scale of the energy transfer (3 ns, 200 ns) results in its high photoluminescence quantum yield. The discovery of the distinct energy transfer pathways from a single chromophore is important for establishing design strategies of luminescent complexes.</description><subject>A: Kinetics, Dynamics, Photochemistry, and Excited States</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Atomic, Molecular &amp; Chemical</subject><subject>Science &amp; Technology</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkT1v1EAQhi0EIiGhp9wSifiY_bDPLoM5INJJSRFqa2yPzxvZu2Z3zeXq_HH2chEdEtW8xfuMRs8kyQcOKw6Cf8bWrx7mFlfQghBCvUrOeSYgzQTPXscMRZlmuSzPknfePwAAl0K9Tc6kWBd5nsN58vR1wZFtDLndgd07NL4nx-4wDHs8eNY7OzE07NoEMgbZVu_QdCxYtkUTBjS6I3ZjDdMm0vo3jmQC2yzOznqZWGWneaRH8myvw8DuBuvnQRtKbx-P4Benux35y-RNj6On9y_zIvn5bXNf_Ui3t99vquttipLLkGIv1xIVLwk67BoJXYbNuuiKTLVSQNm0KhdNQ6oAkSlA3nCJZUNZjyRUIeRF8vG0d3b210I-1JP2LY0jGrKLr4WSCiKZy1iFU7V11ntHfT07PaE71Bzqo_o6qq-P6usX9REpTsieGtv7VpNp6S8W3cdHrKVSMYGsdMCgransYkJEP_0_GttXp_bzCXZxJkr7911_ALxOp-4</recordid><startdate>20200820</startdate><enddate>20200820</enddate><creator>Miyazaki, Shiori</creator><creator>Miyata, Kiyoshi</creator><creator>Sakamoto, Haruna</creator><creator>Suzue, Fumiya</creator><creator>Kitagawa, Yuichi</creator><creator>Hasegawa, Yasuchika</creator><creator>Onda, Ken</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1487-2531</orcidid><orcidid>https://orcid.org/0000-0002-6622-8011</orcidid><orcidid>https://orcid.org/0000-0001-6748-1337</orcidid><orcidid>https://orcid.org/0000-0003-1724-2009</orcidid></search><sort><creationdate>20200820</creationdate><title>Dual Energy Transfer Pathways from an Antenna Ligand to Lanthanide Ion in Trivalent Europium Complexes with Phosphine-Oxide Bridges</title><author>Miyazaki, Shiori ; Miyata, Kiyoshi ; Sakamoto, Haruna ; Suzue, Fumiya ; Kitagawa, Yuichi ; Hasegawa, Yasuchika ; Onda, Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a313t-af373a419e0dadb30d5ab78d854c3209bc462bbe4802540a1b13a9be5fae24823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>A: Kinetics, Dynamics, Photochemistry, and Excited States</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Atomic, Molecular &amp; Chemical</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miyazaki, Shiori</creatorcontrib><creatorcontrib>Miyata, Kiyoshi</creatorcontrib><creatorcontrib>Sakamoto, Haruna</creatorcontrib><creatorcontrib>Suzue, Fumiya</creatorcontrib><creatorcontrib>Kitagawa, Yuichi</creatorcontrib><creatorcontrib>Hasegawa, Yasuchika</creatorcontrib><creatorcontrib>Onda, Ken</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miyazaki, Shiori</au><au>Miyata, Kiyoshi</au><au>Sakamoto, Haruna</au><au>Suzue, Fumiya</au><au>Kitagawa, Yuichi</au><au>Hasegawa, Yasuchika</au><au>Onda, Ken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual Energy Transfer Pathways from an Antenna Ligand to Lanthanide Ion in Trivalent Europium Complexes with Phosphine-Oxide Bridges</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><stitle>J PHYS CHEM A</stitle><addtitle>J. Phys. Chem. A</addtitle><date>2020-08-20</date><risdate>2020</risdate><volume>124</volume><issue>33</issue><spage>6601</spage><epage>6606</epage><pages>6601-6606</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Trivalent europium (Eu3+) complexes are attractive materials for luminescence applications if energy transfer from antenna ligands to the lanthanide ion is efficient. However, the microscopic mechanisms of the transfer remain elusive, and fundamental physical chemistry questions still require answers. We track the energy transfer processes in a luminescent complex Eu­(hfa)3(DPPTO)2 (hfa, hexafluoro­acetylacetonate; DPPTO, 2-diphenyl­phosphoryl­triphenylene) using time-resolved photoluminescence spectroscopy. In addition to the conventional energy transfer pathway through the T1 state of the ligands, we discovered ultrafast energy transfer pathway directly from the singlet excited states of the ligands to the 5D1 state of Eu3+. The short time scale of the energy transfer (3 ns, 200 ns) results in its high photoluminescence quantum yield. The discovery of the distinct energy transfer pathways from a single chromophore is important for establishing design strategies of luminescent complexes.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>32786660</pmid><doi>10.1021/acs.jpca.0c02224</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1487-2531</orcidid><orcidid>https://orcid.org/0000-0002-6622-8011</orcidid><orcidid>https://orcid.org/0000-0001-6748-1337</orcidid><orcidid>https://orcid.org/0000-0003-1724-2009</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2020-08, Vol.124 (33), p.6601-6606
issn 1089-5639
1520-5215
language eng
recordid cdi_webofscience_primary_000563734400003CitationCount
source ACS Publications; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects A: Kinetics, Dynamics, Photochemistry, and Excited States
Chemistry
Chemistry, Physical
Physical Sciences
Physics
Physics, Atomic, Molecular & Chemical
Science & Technology
title Dual Energy Transfer Pathways from an Antenna Ligand to Lanthanide Ion in Trivalent Europium Complexes with Phosphine-Oxide Bridges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T01%3A57%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20Energy%20Transfer%20Pathways%20from%20an%20Antenna%20Ligand%20to%20Lanthanide%20Ion%20in%20Trivalent%20Europium%20Complexes%20with%20Phosphine-Oxide%20Bridges&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Miyazaki,%20Shiori&rft.date=2020-08-20&rft.volume=124&rft.issue=33&rft.spage=6601&rft.epage=6606&rft.pages=6601-6606&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.0c02224&rft_dat=%3Cproquest_webof%3E2434054063%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434054063&rft_id=info:pmid/32786660&rfr_iscdi=true