An alternative test for conditional unconfoundedness using auxiliary variables

This paper proposes an alternative test procedure for testing the conditional unconfoundedness assumption which is an important identification condition commonly imposed in the literature of program analysis and policy evaluation. We transform the conditional unconfoundedness test to a nonparametric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Economics letters 2020-09, Vol.194, p.109320, Article 109320
Hauptverfasser: Fang, Ying, Tang, Shengfang, Cai, Zongwu, Lin, Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 109320
container_title Economics letters
container_volume 194
creator Fang, Ying
Tang, Shengfang
Cai, Zongwu
Lin, Ming
description This paper proposes an alternative test procedure for testing the conditional unconfoundedness assumption which is an important identification condition commonly imposed in the literature of program analysis and policy evaluation. We transform the conditional unconfoundedness test to a nonparametric conditional moment test using an auxiliary variable which is independent of the treatment assignment variable conditional on potential outcomes and observable covariates. The proposed test statistic is shown to have a limiting normal distribution under the null hypothesis of conditional independence. Monte Carlo simulations are conducted to examine the finite sample performances of the proposed test statistics. Finally, the proposed test method is applied to test the conditional unconfoundedness in the real example of the return to college education. •Testing the conditional unconfoundedness assumption.•Using an auxiliary variable.•Transforming the conditional unconfoundedness test to a nonparametric conditional moment test.•Test statistic is shown to have a limiting normal distribution under the null hypothesis.
doi_str_mv 10.1016/j.econlet.2020.109320
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000563478000031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165176520302111</els_id><sourcerecordid>2467353400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-c321a2b2baac53b7c84da6d3f0562d8445416d239567b2f95af647f584708a413</originalsourceid><addsrcrecordid>eNqNkEtLAzEYRYMoWKs_QRhwKVPznExXUoovEN3oOmTykJQxqUmm6r83wxS3usqDez7udwA4R3CBIGquNgujgu9NXmCIx78lwfAAzFDLSc0Jp4dgVnKsRrxhx-AkpQ2ECC85m4Gnla9kn030MrudqbJJubIhVmWidtkFL_tq8OVlw-C10d6kVA3J-bdKDl-udzJ-VzsZnex6k07BkZV9Mmf7cw5eb29e1vf14_Pdw3r1WCsKca4VwUjiDndSKkY6rlqqZaOJhazBuqWUUdRoTJas4R22SyZtQ7llLeWwlRSRObiY5m5j-BhKZ7EJQ9mhTwLThhNGKIQlxaaUiiGlaKzYRvdeCgsExahObMRenRjViUld4S4n7tN0wSbljFfml4WwtCSUt-UCydil_X967bIcra6LzVzQ6wk1xdXOmSj2uHbRqCx0cH9U_QH9Oprx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467353400</pqid></control><display><type>article</type><title>An alternative test for conditional unconfoundedness using auxiliary variables</title><source>Access via ScienceDirect (Elsevier)</source><source>Web of Science - Social Sciences Citation Index – 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Fang, Ying ; Tang, Shengfang ; Cai, Zongwu ; Lin, Ming</creator><creatorcontrib>Fang, Ying ; Tang, Shengfang ; Cai, Zongwu ; Lin, Ming</creatorcontrib><description>This paper proposes an alternative test procedure for testing the conditional unconfoundedness assumption which is an important identification condition commonly imposed in the literature of program analysis and policy evaluation. We transform the conditional unconfoundedness test to a nonparametric conditional moment test using an auxiliary variable which is independent of the treatment assignment variable conditional on potential outcomes and observable covariates. The proposed test statistic is shown to have a limiting normal distribution under the null hypothesis of conditional independence. Monte Carlo simulations are conducted to examine the finite sample performances of the proposed test statistics. Finally, the proposed test method is applied to test the conditional unconfoundedness in the real example of the return to college education. •Testing the conditional unconfoundedness assumption.•Using an auxiliary variable.•Transforming the conditional unconfoundedness test to a nonparametric conditional moment test.•Test statistic is shown to have a limiting normal distribution under the null hypothesis.</description><identifier>ISSN: 0165-1765</identifier><identifier>EISSN: 1873-7374</identifier><identifier>DOI: 10.1016/j.econlet.2020.109320</identifier><language>eng</language><publisher>LAUSANNE: Elsevier B.V</publisher><subject>Business &amp; Economics ; Conditional unconfoundedness ; Economics ; Estimating techniques ; Moment test ; Monte Carlo simulation ; Normal distribution ; Null hypothesis ; Social Sciences ; Treatment effect ; Variables</subject><ispartof>Economics letters, 2020-09, Vol.194, p.109320, Article 109320</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Sep 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000563478000031</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c402t-c321a2b2baac53b7c84da6d3f0562d8445416d239567b2f95af647f584708a413</citedby><cites>FETCH-LOGICAL-c402t-c321a2b2baac53b7c84da6d3f0562d8445416d239567b2f95af647f584708a413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.econlet.2020.109320$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,28254,46000</link.rule.ids></links><search><creatorcontrib>Fang, Ying</creatorcontrib><creatorcontrib>Tang, Shengfang</creatorcontrib><creatorcontrib>Cai, Zongwu</creatorcontrib><creatorcontrib>Lin, Ming</creatorcontrib><title>An alternative test for conditional unconfoundedness using auxiliary variables</title><title>Economics letters</title><addtitle>ECON LETT</addtitle><description>This paper proposes an alternative test procedure for testing the conditional unconfoundedness assumption which is an important identification condition commonly imposed in the literature of program analysis and policy evaluation. We transform the conditional unconfoundedness test to a nonparametric conditional moment test using an auxiliary variable which is independent of the treatment assignment variable conditional on potential outcomes and observable covariates. The proposed test statistic is shown to have a limiting normal distribution under the null hypothesis of conditional independence. Monte Carlo simulations are conducted to examine the finite sample performances of the proposed test statistics. Finally, the proposed test method is applied to test the conditional unconfoundedness in the real example of the return to college education. •Testing the conditional unconfoundedness assumption.•Using an auxiliary variable.•Transforming the conditional unconfoundedness test to a nonparametric conditional moment test.•Test statistic is shown to have a limiting normal distribution under the null hypothesis.</description><subject>Business &amp; Economics</subject><subject>Conditional unconfoundedness</subject><subject>Economics</subject><subject>Estimating techniques</subject><subject>Moment test</subject><subject>Monte Carlo simulation</subject><subject>Normal distribution</subject><subject>Null hypothesis</subject><subject>Social Sciences</subject><subject>Treatment effect</subject><subject>Variables</subject><issn>0165-1765</issn><issn>1873-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ARHDP</sourceid><recordid>eNqNkEtLAzEYRYMoWKs_QRhwKVPznExXUoovEN3oOmTykJQxqUmm6r83wxS3usqDez7udwA4R3CBIGquNgujgu9NXmCIx78lwfAAzFDLSc0Jp4dgVnKsRrxhx-AkpQ2ECC85m4Gnla9kn030MrudqbJJubIhVmWidtkFL_tq8OVlw-C10d6kVA3J-bdKDl-udzJ-VzsZnex6k07BkZV9Mmf7cw5eb29e1vf14_Pdw3r1WCsKca4VwUjiDndSKkY6rlqqZaOJhazBuqWUUdRoTJas4R22SyZtQ7llLeWwlRSRObiY5m5j-BhKZ7EJQ9mhTwLThhNGKIQlxaaUiiGlaKzYRvdeCgsExahObMRenRjViUld4S4n7tN0wSbljFfml4WwtCSUt-UCydil_X967bIcra6LzVzQ6wk1xdXOmSj2uHbRqCx0cH9U_QH9Oprx</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Fang, Ying</creator><creator>Tang, Shengfang</creator><creator>Cai, Zongwu</creator><creator>Lin, Ming</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Science Ltd</general><scope>17B</scope><scope>ARHDP</scope><scope>BLEPL</scope><scope>DVR</scope><scope>EGQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20200901</creationdate><title>An alternative test for conditional unconfoundedness using auxiliary variables</title><author>Fang, Ying ; Tang, Shengfang ; Cai, Zongwu ; Lin, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-c321a2b2baac53b7c84da6d3f0562d8445416d239567b2f95af647f584708a413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Business &amp; Economics</topic><topic>Conditional unconfoundedness</topic><topic>Economics</topic><topic>Estimating techniques</topic><topic>Moment test</topic><topic>Monte Carlo simulation</topic><topic>Normal distribution</topic><topic>Null hypothesis</topic><topic>Social Sciences</topic><topic>Treatment effect</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Ying</creatorcontrib><creatorcontrib>Tang, Shengfang</creatorcontrib><creatorcontrib>Cai, Zongwu</creatorcontrib><creatorcontrib>Lin, Ming</creatorcontrib><collection>Web of Knowledge</collection><collection>Web of Science - Social Sciences Citation Index – 2020</collection><collection>Web of Science Core Collection</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI &amp; AHCI)</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Economics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Ying</au><au>Tang, Shengfang</au><au>Cai, Zongwu</au><au>Lin, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An alternative test for conditional unconfoundedness using auxiliary variables</atitle><jtitle>Economics letters</jtitle><stitle>ECON LETT</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>194</volume><spage>109320</spage><pages>109320-</pages><artnum>109320</artnum><issn>0165-1765</issn><eissn>1873-7374</eissn><abstract>This paper proposes an alternative test procedure for testing the conditional unconfoundedness assumption which is an important identification condition commonly imposed in the literature of program analysis and policy evaluation. We transform the conditional unconfoundedness test to a nonparametric conditional moment test using an auxiliary variable which is independent of the treatment assignment variable conditional on potential outcomes and observable covariates. The proposed test statistic is shown to have a limiting normal distribution under the null hypothesis of conditional independence. Monte Carlo simulations are conducted to examine the finite sample performances of the proposed test statistics. Finally, the proposed test method is applied to test the conditional unconfoundedness in the real example of the return to college education. •Testing the conditional unconfoundedness assumption.•Using an auxiliary variable.•Transforming the conditional unconfoundedness test to a nonparametric conditional moment test.•Test statistic is shown to have a limiting normal distribution under the null hypothesis.</abstract><cop>LAUSANNE</cop><pub>Elsevier B.V</pub><doi>10.1016/j.econlet.2020.109320</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-1765
ispartof Economics letters, 2020-09, Vol.194, p.109320, Article 109320
issn 0165-1765
1873-7374
language eng
recordid cdi_webofscience_primary_000563478000031
source Access via ScienceDirect (Elsevier); Web of Science - Social Sciences Citation Index – 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Business & Economics
Conditional unconfoundedness
Economics
Estimating techniques
Moment test
Monte Carlo simulation
Normal distribution
Null hypothesis
Social Sciences
Treatment effect
Variables
title An alternative test for conditional unconfoundedness using auxiliary variables
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T05%3A35%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20alternative%20test%20for%20conditional%20unconfoundedness%20using%20auxiliary%20variables&rft.jtitle=Economics%20letters&rft.au=Fang,%20Ying&rft.date=2020-09-01&rft.volume=194&rft.spage=109320&rft.pages=109320-&rft.artnum=109320&rft.issn=0165-1765&rft.eissn=1873-7374&rft_id=info:doi/10.1016/j.econlet.2020.109320&rft_dat=%3Cproquest_webof%3E2467353400%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467353400&rft_id=info:pmid/&rft_els_id=S0165176520302111&rfr_iscdi=true