An alternative test for conditional unconfoundedness using auxiliary variables
This paper proposes an alternative test procedure for testing the conditional unconfoundedness assumption which is an important identification condition commonly imposed in the literature of program analysis and policy evaluation. We transform the conditional unconfoundedness test to a nonparametric...
Gespeichert in:
Veröffentlicht in: | Economics letters 2020-09, Vol.194, p.109320, Article 109320 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 109320 |
container_title | Economics letters |
container_volume | 194 |
creator | Fang, Ying Tang, Shengfang Cai, Zongwu Lin, Ming |
description | This paper proposes an alternative test procedure for testing the conditional unconfoundedness assumption which is an important identification condition commonly imposed in the literature of program analysis and policy evaluation. We transform the conditional unconfoundedness test to a nonparametric conditional moment test using an auxiliary variable which is independent of the treatment assignment variable conditional on potential outcomes and observable covariates. The proposed test statistic is shown to have a limiting normal distribution under the null hypothesis of conditional independence. Monte Carlo simulations are conducted to examine the finite sample performances of the proposed test statistics. Finally, the proposed test method is applied to test the conditional unconfoundedness in the real example of the return to college education.
•Testing the conditional unconfoundedness assumption.•Using an auxiliary variable.•Transforming the conditional unconfoundedness test to a nonparametric conditional moment test.•Test statistic is shown to have a limiting normal distribution under the null hypothesis. |
doi_str_mv | 10.1016/j.econlet.2020.109320 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000563478000031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165176520302111</els_id><sourcerecordid>2467353400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-c321a2b2baac53b7c84da6d3f0562d8445416d239567b2f95af647f584708a413</originalsourceid><addsrcrecordid>eNqNkEtLAzEYRYMoWKs_QRhwKVPznExXUoovEN3oOmTykJQxqUmm6r83wxS3usqDez7udwA4R3CBIGquNgujgu9NXmCIx78lwfAAzFDLSc0Jp4dgVnKsRrxhx-AkpQ2ECC85m4Gnla9kn030MrudqbJJubIhVmWidtkFL_tq8OVlw-C10d6kVA3J-bdKDl-udzJ-VzsZnex6k07BkZV9Mmf7cw5eb29e1vf14_Pdw3r1WCsKca4VwUjiDndSKkY6rlqqZaOJhazBuqWUUdRoTJas4R22SyZtQ7llLeWwlRSRObiY5m5j-BhKZ7EJQ9mhTwLThhNGKIQlxaaUiiGlaKzYRvdeCgsExahObMRenRjViUld4S4n7tN0wSbljFfml4WwtCSUt-UCydil_X967bIcra6LzVzQ6wk1xdXOmSj2uHbRqCx0cH9U_QH9Oprx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467353400</pqid></control><display><type>article</type><title>An alternative test for conditional unconfoundedness using auxiliary variables</title><source>Access via ScienceDirect (Elsevier)</source><source>Web of Science - Social Sciences Citation Index – 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Fang, Ying ; Tang, Shengfang ; Cai, Zongwu ; Lin, Ming</creator><creatorcontrib>Fang, Ying ; Tang, Shengfang ; Cai, Zongwu ; Lin, Ming</creatorcontrib><description>This paper proposes an alternative test procedure for testing the conditional unconfoundedness assumption which is an important identification condition commonly imposed in the literature of program analysis and policy evaluation. We transform the conditional unconfoundedness test to a nonparametric conditional moment test using an auxiliary variable which is independent of the treatment assignment variable conditional on potential outcomes and observable covariates. The proposed test statistic is shown to have a limiting normal distribution under the null hypothesis of conditional independence. Monte Carlo simulations are conducted to examine the finite sample performances of the proposed test statistics. Finally, the proposed test method is applied to test the conditional unconfoundedness in the real example of the return to college education.
•Testing the conditional unconfoundedness assumption.•Using an auxiliary variable.•Transforming the conditional unconfoundedness test to a nonparametric conditional moment test.•Test statistic is shown to have a limiting normal distribution under the null hypothesis.</description><identifier>ISSN: 0165-1765</identifier><identifier>EISSN: 1873-7374</identifier><identifier>DOI: 10.1016/j.econlet.2020.109320</identifier><language>eng</language><publisher>LAUSANNE: Elsevier B.V</publisher><subject>Business & Economics ; Conditional unconfoundedness ; Economics ; Estimating techniques ; Moment test ; Monte Carlo simulation ; Normal distribution ; Null hypothesis ; Social Sciences ; Treatment effect ; Variables</subject><ispartof>Economics letters, 2020-09, Vol.194, p.109320, Article 109320</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Sep 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000563478000031</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c402t-c321a2b2baac53b7c84da6d3f0562d8445416d239567b2f95af647f584708a413</citedby><cites>FETCH-LOGICAL-c402t-c321a2b2baac53b7c84da6d3f0562d8445416d239567b2f95af647f584708a413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.econlet.2020.109320$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,28254,46000</link.rule.ids></links><search><creatorcontrib>Fang, Ying</creatorcontrib><creatorcontrib>Tang, Shengfang</creatorcontrib><creatorcontrib>Cai, Zongwu</creatorcontrib><creatorcontrib>Lin, Ming</creatorcontrib><title>An alternative test for conditional unconfoundedness using auxiliary variables</title><title>Economics letters</title><addtitle>ECON LETT</addtitle><description>This paper proposes an alternative test procedure for testing the conditional unconfoundedness assumption which is an important identification condition commonly imposed in the literature of program analysis and policy evaluation. We transform the conditional unconfoundedness test to a nonparametric conditional moment test using an auxiliary variable which is independent of the treatment assignment variable conditional on potential outcomes and observable covariates. The proposed test statistic is shown to have a limiting normal distribution under the null hypothesis of conditional independence. Monte Carlo simulations are conducted to examine the finite sample performances of the proposed test statistics. Finally, the proposed test method is applied to test the conditional unconfoundedness in the real example of the return to college education.
•Testing the conditional unconfoundedness assumption.•Using an auxiliary variable.•Transforming the conditional unconfoundedness test to a nonparametric conditional moment test.•Test statistic is shown to have a limiting normal distribution under the null hypothesis.</description><subject>Business & Economics</subject><subject>Conditional unconfoundedness</subject><subject>Economics</subject><subject>Estimating techniques</subject><subject>Moment test</subject><subject>Monte Carlo simulation</subject><subject>Normal distribution</subject><subject>Null hypothesis</subject><subject>Social Sciences</subject><subject>Treatment effect</subject><subject>Variables</subject><issn>0165-1765</issn><issn>1873-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ARHDP</sourceid><recordid>eNqNkEtLAzEYRYMoWKs_QRhwKVPznExXUoovEN3oOmTykJQxqUmm6r83wxS3usqDez7udwA4R3CBIGquNgujgu9NXmCIx78lwfAAzFDLSc0Jp4dgVnKsRrxhx-AkpQ2ECC85m4Gnla9kn030MrudqbJJubIhVmWidtkFL_tq8OVlw-C10d6kVA3J-bdKDl-udzJ-VzsZnex6k07BkZV9Mmf7cw5eb29e1vf14_Pdw3r1WCsKca4VwUjiDndSKkY6rlqqZaOJhazBuqWUUdRoTJas4R22SyZtQ7llLeWwlRSRObiY5m5j-BhKZ7EJQ9mhTwLThhNGKIQlxaaUiiGlaKzYRvdeCgsExahObMRenRjViUld4S4n7tN0wSbljFfml4WwtCSUt-UCydil_X967bIcra6LzVzQ6wk1xdXOmSj2uHbRqCx0cH9U_QH9Oprx</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Fang, Ying</creator><creator>Tang, Shengfang</creator><creator>Cai, Zongwu</creator><creator>Lin, Ming</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Science Ltd</general><scope>17B</scope><scope>ARHDP</scope><scope>BLEPL</scope><scope>DVR</scope><scope>EGQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20200901</creationdate><title>An alternative test for conditional unconfoundedness using auxiliary variables</title><author>Fang, Ying ; Tang, Shengfang ; Cai, Zongwu ; Lin, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-c321a2b2baac53b7c84da6d3f0562d8445416d239567b2f95af647f584708a413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Business & Economics</topic><topic>Conditional unconfoundedness</topic><topic>Economics</topic><topic>Estimating techniques</topic><topic>Moment test</topic><topic>Monte Carlo simulation</topic><topic>Normal distribution</topic><topic>Null hypothesis</topic><topic>Social Sciences</topic><topic>Treatment effect</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Ying</creatorcontrib><creatorcontrib>Tang, Shengfang</creatorcontrib><creatorcontrib>Cai, Zongwu</creatorcontrib><creatorcontrib>Lin, Ming</creatorcontrib><collection>Web of Knowledge</collection><collection>Web of Science - Social Sciences Citation Index – 2020</collection><collection>Web of Science Core Collection</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI & AHCI)</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Economics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Ying</au><au>Tang, Shengfang</au><au>Cai, Zongwu</au><au>Lin, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An alternative test for conditional unconfoundedness using auxiliary variables</atitle><jtitle>Economics letters</jtitle><stitle>ECON LETT</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>194</volume><spage>109320</spage><pages>109320-</pages><artnum>109320</artnum><issn>0165-1765</issn><eissn>1873-7374</eissn><abstract>This paper proposes an alternative test procedure for testing the conditional unconfoundedness assumption which is an important identification condition commonly imposed in the literature of program analysis and policy evaluation. We transform the conditional unconfoundedness test to a nonparametric conditional moment test using an auxiliary variable which is independent of the treatment assignment variable conditional on potential outcomes and observable covariates. The proposed test statistic is shown to have a limiting normal distribution under the null hypothesis of conditional independence. Monte Carlo simulations are conducted to examine the finite sample performances of the proposed test statistics. Finally, the proposed test method is applied to test the conditional unconfoundedness in the real example of the return to college education.
•Testing the conditional unconfoundedness assumption.•Using an auxiliary variable.•Transforming the conditional unconfoundedness test to a nonparametric conditional moment test.•Test statistic is shown to have a limiting normal distribution under the null hypothesis.</abstract><cop>LAUSANNE</cop><pub>Elsevier B.V</pub><doi>10.1016/j.econlet.2020.109320</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-1765 |
ispartof | Economics letters, 2020-09, Vol.194, p.109320, Article 109320 |
issn | 0165-1765 1873-7374 |
language | eng |
recordid | cdi_webofscience_primary_000563478000031 |
source | Access via ScienceDirect (Elsevier); Web of Science - Social Sciences Citation Index – 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Business & Economics Conditional unconfoundedness Economics Estimating techniques Moment test Monte Carlo simulation Normal distribution Null hypothesis Social Sciences Treatment effect Variables |
title | An alternative test for conditional unconfoundedness using auxiliary variables |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T05%3A35%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20alternative%20test%20for%20conditional%20unconfoundedness%20using%20auxiliary%20variables&rft.jtitle=Economics%20letters&rft.au=Fang,%20Ying&rft.date=2020-09-01&rft.volume=194&rft.spage=109320&rft.pages=109320-&rft.artnum=109320&rft.issn=0165-1765&rft.eissn=1873-7374&rft_id=info:doi/10.1016/j.econlet.2020.109320&rft_dat=%3Cproquest_webof%3E2467353400%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467353400&rft_id=info:pmid/&rft_els_id=S0165176520302111&rfr_iscdi=true |