Discrete modeling of a longwall coal mine gob for CFD simulation

One area of concern in longwall coal mines is the active gob directly behind the longwall face, where high concentrations of methane are likely to accumulate and active roof caving occurs. Using computational fluid dynamics (CFD) to simulate gas flows in and through the gob, most researchers have re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:INTERNATIONAL JOURNAL OF MINING SCIENCE AND TECHNOLOGY 2020-07, Vol.30 (4), p.463-469
Hauptverfasser: Juganda, Aditya, Strebinger, Claire, Brune, Jürgen F., Bogin, Gregory E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 469
container_issue 4
container_start_page 463
container_title INTERNATIONAL JOURNAL OF MINING SCIENCE AND TECHNOLOGY
container_volume 30
creator Juganda, Aditya
Strebinger, Claire
Brune, Jürgen F.
Bogin, Gregory E.
description One area of concern in longwall coal mines is the active gob directly behind the longwall face, where high concentrations of methane are likely to accumulate and active roof caving occurs. Using computational fluid dynamics (CFD) to simulate gas flows in and through the gob, most researchers have represented the entire gob as a porous medium governed by Darcy’s law. However, Darcy-type porous flow may not be applicable for the highly porous and unconsolidated fringes of the gob. In addition, porous medium models do not allow for representative combustion modeling to simulate in-gob ignition and flame propagation. This study presents a hybrid approach to modeling the gob using CFD: the outer part of the gob is modeled as discrete objects that simulate coarse rock rubble, while the gob center is modeled as a porous medium.
doi_str_mv 10.1016/j.ijmst.2020.05.004
format Article
fullrecord <record><control><sourceid>wanfang_jour_webof</sourceid><recordid>TN_cdi_webofscience_primary_000563372100005CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zgkydxxb_e202004005</wanfj_id><els_id>S2095268620304080</els_id><doaj_id>oai_doaj_org_article_92fcba9c79494ea290e8078017e40063</doaj_id><sourcerecordid>zgkydxxb_e202004005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-2460b7b1021f3e42e5fa89b7534aecc6abb465466a9801ebf2effbd49415ab673</originalsourceid><addsrcrecordid>eNqNUctq3TAUNKWBhDRfkI32xe6RLMn2otDiNG0g0E2zFpJ8ZOTaUpF9m8fXV_dB6KpUG4nDzJzRTFFcU6goUPlhqvy0rFvFgEEFogLgb4oLxigrJUj5Nr-hEyWTrTwvrtZ1gnxky1vBLopPN361CTckSxxw9mEk0RFN5hjGRz3PxEY9k8UHJGM0xMVE-tsbsvplN-vNx_CuOHN6XvHqdF8WD7dffvTfyvvvX-_6z_el5QK2knEJpjEUGHU1cobC6bYzjai5RmulNoZLwaXUXQsUjWPonBl4x6nQRjb1ZXF31B2intSv5BednlXUXh0GMY1Kp83bGVXHnDW6s02X6ahZB9hCk2Ub5PnnddZ6f9R61MHpMKop7lLI7tXL-PN5eHoyCvdpQoaLjK6PaJviuiZ0r9spqH0DalKHBtSeo0CoTMys9rQDTXSr9RgsvjJzAyIbaRjdlyF6vx3C7OMubH_Z-w9qRn88ojGn_9tjUifG4BPaLcfj_2n0D7iDrsA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Discrete modeling of a longwall coal mine gob for CFD simulation</title><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><source>Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Juganda, Aditya ; Strebinger, Claire ; Brune, Jürgen F. ; Bogin, Gregory E.</creator><creatorcontrib>Juganda, Aditya ; Strebinger, Claire ; Brune, Jürgen F. ; Bogin, Gregory E.</creatorcontrib><description>One area of concern in longwall coal mines is the active gob directly behind the longwall face, where high concentrations of methane are likely to accumulate and active roof caving occurs. Using computational fluid dynamics (CFD) to simulate gas flows in and through the gob, most researchers have represented the entire gob as a porous medium governed by Darcy’s law. However, Darcy-type porous flow may not be applicable for the highly porous and unconsolidated fringes of the gob. In addition, porous medium models do not allow for representative combustion modeling to simulate in-gob ignition and flame propagation. This study presents a hybrid approach to modeling the gob using CFD: the outer part of the gob is modeled as discrete objects that simulate coarse rock rubble, while the gob center is modeled as a porous medium.</description><identifier>ISSN: 2095-2686</identifier><identifier>EISSN: 2212-6066</identifier><identifier>DOI: 10.1016/j.ijmst.2020.05.004</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier B.V</publisher><subject>Coal ; Computational fluid dynamic ; Longwall ; Mining &amp; Mineral Processing ; Modeling ; Physical Sciences ; Science &amp; Technology ; Ventilation</subject><ispartof>INTERNATIONAL JOURNAL OF MINING SCIENCE AND TECHNOLOGY, 2020-07, Vol.30 (4), p.463-469</ispartof><rights>2020</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>33</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000563372100005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c450t-2460b7b1021f3e42e5fa89b7534aecc6abb465466a9801ebf2effbd49415ab673</citedby><cites>FETCH-LOGICAL-c450t-2460b7b1021f3e42e5fa89b7534aecc6abb465466a9801ebf2effbd49415ab673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zgkydxxb-e/zgkydxxb-e.jpg</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijmst.2020.05.004$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,2115,3551,27929,27930,28253,46000</link.rule.ids></links><search><creatorcontrib>Juganda, Aditya</creatorcontrib><creatorcontrib>Strebinger, Claire</creatorcontrib><creatorcontrib>Brune, Jürgen F.</creatorcontrib><creatorcontrib>Bogin, Gregory E.</creatorcontrib><title>Discrete modeling of a longwall coal mine gob for CFD simulation</title><title>INTERNATIONAL JOURNAL OF MINING SCIENCE AND TECHNOLOGY</title><addtitle>INT J MIN SCI TECHNO</addtitle><description>One area of concern in longwall coal mines is the active gob directly behind the longwall face, where high concentrations of methane are likely to accumulate and active roof caving occurs. Using computational fluid dynamics (CFD) to simulate gas flows in and through the gob, most researchers have represented the entire gob as a porous medium governed by Darcy’s law. However, Darcy-type porous flow may not be applicable for the highly porous and unconsolidated fringes of the gob. In addition, porous medium models do not allow for representative combustion modeling to simulate in-gob ignition and flame propagation. This study presents a hybrid approach to modeling the gob using CFD: the outer part of the gob is modeled as discrete objects that simulate coarse rock rubble, while the gob center is modeled as a porous medium.</description><subject>Coal</subject><subject>Computational fluid dynamic</subject><subject>Longwall</subject><subject>Mining &amp; Mineral Processing</subject><subject>Modeling</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>Ventilation</subject><issn>2095-2686</issn><issn>2212-6066</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNUctq3TAUNKWBhDRfkI32xe6RLMn2otDiNG0g0E2zFpJ8ZOTaUpF9m8fXV_dB6KpUG4nDzJzRTFFcU6goUPlhqvy0rFvFgEEFogLgb4oLxigrJUj5Nr-hEyWTrTwvrtZ1gnxky1vBLopPN361CTckSxxw9mEk0RFN5hjGRz3PxEY9k8UHJGM0xMVE-tsbsvplN-vNx_CuOHN6XvHqdF8WD7dffvTfyvvvX-_6z_el5QK2knEJpjEUGHU1cobC6bYzjai5RmulNoZLwaXUXQsUjWPonBl4x6nQRjb1ZXF31B2intSv5BednlXUXh0GMY1Kp83bGVXHnDW6s02X6ahZB9hCk2Ub5PnnddZ6f9R61MHpMKop7lLI7tXL-PN5eHoyCvdpQoaLjK6PaJviuiZ0r9spqH0DalKHBtSeo0CoTMys9rQDTXSr9RgsvjJzAyIbaRjdlyF6vx3C7OMubH_Z-w9qRn88ojGn_9tjUifG4BPaLcfj_2n0D7iDrsA</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Juganda, Aditya</creator><creator>Strebinger, Claire</creator><creator>Brune, Jürgen F.</creator><creator>Bogin, Gregory E.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Colorado School of Mines,Golden,CO 80401,USA</general><scope>6I.</scope><scope>AAFTH</scope><scope>95M</scope><scope>ABMOY</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><scope>DOA</scope></search><sort><creationdate>20200701</creationdate><title>Discrete modeling of a longwall coal mine gob for CFD simulation</title><author>Juganda, Aditya ; Strebinger, Claire ; Brune, Jürgen F. ; Bogin, Gregory E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-2460b7b1021f3e42e5fa89b7534aecc6abb465466a9801ebf2effbd49415ab673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coal</topic><topic>Computational fluid dynamic</topic><topic>Longwall</topic><topic>Mining &amp; Mineral Processing</topic><topic>Modeling</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>Ventilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Juganda, Aditya</creatorcontrib><creatorcontrib>Strebinger, Claire</creatorcontrib><creatorcontrib>Brune, Jürgen F.</creatorcontrib><creatorcontrib>Bogin, Gregory E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Conference Proceedings Citation Index - Science (CPCI-S)</collection><collection>Conference Proceedings Citation Index - Science (CPCI-S) 2020</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><collection>Directory of Open Access Journals</collection><jtitle>INTERNATIONAL JOURNAL OF MINING SCIENCE AND TECHNOLOGY</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Juganda, Aditya</au><au>Strebinger, Claire</au><au>Brune, Jürgen F.</au><au>Bogin, Gregory E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete modeling of a longwall coal mine gob for CFD simulation</atitle><jtitle>INTERNATIONAL JOURNAL OF MINING SCIENCE AND TECHNOLOGY</jtitle><stitle>INT J MIN SCI TECHNO</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>30</volume><issue>4</issue><spage>463</spage><epage>469</epage><pages>463-469</pages><issn>2095-2686</issn><eissn>2212-6066</eissn><abstract>One area of concern in longwall coal mines is the active gob directly behind the longwall face, where high concentrations of methane are likely to accumulate and active roof caving occurs. Using computational fluid dynamics (CFD) to simulate gas flows in and through the gob, most researchers have represented the entire gob as a porous medium governed by Darcy’s law. However, Darcy-type porous flow may not be applicable for the highly porous and unconsolidated fringes of the gob. In addition, porous medium models do not allow for representative combustion modeling to simulate in-gob ignition and flame propagation. This study presents a hybrid approach to modeling the gob using CFD: the outer part of the gob is modeled as discrete objects that simulate coarse rock rubble, while the gob center is modeled as a porous medium.</abstract><cop>AMSTERDAM</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ijmst.2020.05.004</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2095-2686
ispartof INTERNATIONAL JOURNAL OF MINING SCIENCE AND TECHNOLOGY, 2020-07, Vol.30 (4), p.463-469
issn 2095-2686
2212-6066
language eng
recordid cdi_webofscience_primary_000563372100005CitationCount
source Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier); Directory of Open Access Journals; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Coal
Computational fluid dynamic
Longwall
Mining & Mineral Processing
Modeling
Physical Sciences
Science & Technology
Ventilation
title Discrete modeling of a longwall coal mine gob for CFD simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T22%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20modeling%20of%20a%20longwall%20coal%20mine%20gob%20for%20CFD%20simulation&rft.jtitle=INTERNATIONAL%20JOURNAL%20OF%20MINING%20SCIENCE%20AND%20TECHNOLOGY&rft.au=Juganda,%20Aditya&rft.date=2020-07-01&rft.volume=30&rft.issue=4&rft.spage=463&rft.epage=469&rft.pages=463-469&rft.issn=2095-2686&rft.eissn=2212-6066&rft_id=info:doi/10.1016/j.ijmst.2020.05.004&rft_dat=%3Cwanfang_jour_webof%3Ezgkydxxb_e202004005%3C/wanfang_jour_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=zgkydxxb_e202004005&rft_els_id=S2095268620304080&rft_doaj_id=oai_doaj_org_article_92fcba9c79494ea290e8078017e40063&rfr_iscdi=true