Vapor–Liquid Equilibria for Binary and Ternary Systems with β‑Caryophyllene, Dipentene, and α‑Pinene at 100.7 kPa

The experimental vapor–liquid equilibrium (VLE) data for a ternary system of β-caryophyllene + dipentene + α-pinene and two binary systems composed of β-caryophyllene (1) + dipentene (2) and dipentene (2) + α-pinene (3) were measured using a modified Ellis still in the temperature range from 428.4 t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical and engineering data 2020-08, Vol.65 (8), p.3770-3777
Hauptverfasser: Huang, Yingying, Liang, Jiezhen, Wang, Linlin, Li, Wei, Chen, Xiaopeng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The experimental vapor–liquid equilibrium (VLE) data for a ternary system of β-caryophyllene + dipentene + α-pinene and two binary systems composed of β-caryophyllene (1) + dipentene (2) and dipentene (2) + α-pinene (3) were measured using a modified Ellis still in the temperature range from 428.4 to 529.1 K at 100.7 kPa. The thermodynamic consistency test of the VLE data was carried out using the van Ness test and the McDermott–Ellis method. The binary VLE data were correlated using the Margules, Nonrandom Two-Liquid (NRTL), Wilson, and Universal Quasi Chemical (UNIQUAC) activity coefficient models. The mean absolute deviation values of vapor-phase mole fraction and temperature are 0.0103 and 1.11 K for the β-caryophyllene (1) + dipentene (2) system and 0.0025 and 0.17 K for the dipentene (2) + α-pinene (3) system, respectively. The Wilson model parameters obtained from the binary systems were used to predict the ternary VLE data. By comparing the experimental values for the ternary system with the values calculated using the Wilson model, the mean absolute deviation value of the equilibrium temperature was determined to be 0.49 K; the absolute deviation values of the vapor-phase composition of β-caryophyllene and dipentene were determined to be less than 0.0078 and 0.0062, respectively.
ISSN:0021-9568
1520-5134
DOI:10.1021/acs.jced.9b01049