Low-Voltage Domain-Wall LiNbO3 Memristors

Application of conducting ferroelectric domain walls (DWs) as functional elements may facilitate development of conceptually new resistive switching devices. In a conventional approach, several orders of magnitude change in resistance can be achieved by controlling the DW density using supercoercive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2020-08, Vol.20 (8), p.5873-5878
Hauptverfasser: Chaudhary, P, Lu, H, Lipatov, A, Ahmadi, Z, McConville, J. P. V, Sokolov, A, Shield, J. E, Sinitskii, A, Gregg, J. M, Gruverman, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Application of conducting ferroelectric domain walls (DWs) as functional elements may facilitate development of conceptually new resistive switching devices. In a conventional approach, several orders of magnitude change in resistance can be achieved by controlling the DW density using supercoercive voltage. However, a deleterious characteristic of this approach is high-energy cost of polarization reversal due to high leakage current. Here, we demonstrate a new approach based on tuning the conductivity of DWs themselves rather than on domain rearrangement. Using LiNbO3 capacitors with graphene, we show that resistance of a device set to a polydomain state can be continuously tuned by application of subcoercive voltage. The tuning mechanism is based on the reversible transition between the conducting and insulating states of DWs. The developed approach allows an energy-efficient control of resistance without the need for domain structure modification. The developed memristive devices are promising for multilevel memories and neuromorphic computing applications.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.0c01836