Measurement and State-Dependent Modulation of Hypoglossal Motor Excitability and Responsivity In-Vivo
Motoneurons are the final output pathway for the brain’s influence on behavior. Here we identify properties of hypoglossal motor output to the tongue musculature. Tongue motor control is critical to the pathogenesis of obstructive sleep apnea, a common and serious sleep-related breathing disorder. S...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-01, Vol.10 (1), p.550-550, Article 550 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 550 |
---|---|
container_issue | 1 |
container_start_page | 550 |
container_title | Scientific reports |
container_volume | 10 |
creator | Aggarwal, Jasmin A. Liu, Wen-Ying Montandon, Gaspard Liu, Hattie Hughes, Stuart W. Horner, Richard L. |
description | Motoneurons are the final output pathway for the brain’s influence on behavior. Here we identify properties of hypoglossal motor output to the tongue musculature. Tongue motor control is critical to the pathogenesis of obstructive sleep apnea, a common and serious sleep-related breathing disorder. Studies were performed on mice expressing a light sensitive cation channel exclusively on cholinergic neurons (ChAT-ChR2(H134R)-EYFP). Discrete photostimulations under isoflurane-induced anesthesia from an optical probe positioned above the medullary surface and hypoglossal motor nucleus elicited discrete increases in tongue motor output, with the magnitude of responses dependent on stimulation power (P |
doi_str_mv | 10.1038/s41598-019-57328-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000562813800016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2342867421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-21993ac50ab1fe1e643d6d0ad83a5d38f89f53de6ffcb258da0fb3431e709fd3</originalsourceid><addsrcrecordid>eNqNkV9rFDEUxQdRbKn9Aj7IgC-CjObvTPIiyFptoUXQ4mvITG7WlNlkTTKr--3NdOpafRDzknDv7xzuzamqpxi9woiK14lhLkWDsGx4R4lo2IPqmCDGG0IJeXjvfVSdpnSDyuFEMiwfV0cUS05Zh48ruAKdpggb8LnW3tSfs87QvIMteDPXroKZRp1d8HWw9fl-G9ZjSEmPpZNDrM9-DC7r3o0u728NPkHaBp_cbi5c-OaL24Un1SOrxwSnd_dJdf3-7Hp13lx-_HCxenvZDJyQ3BAsJdUDR7rHFjC0jJrWIG0E1dxQYYW0nBporR16woXRyPaUUQwdktbQk-rNYrud-g2Yocwf9ai20W103Kugnfqz491XtQ471cpWIiaLwYs7gxi-TZCy2rg0wDhqD2FKilCGW9QJMaPP_0JvwhR92W6miGg7RnChyEINsXxaBHsYBiM156iWHFXJUd3mqFgRPbu_xkHyK7UCvFyA79AHmwYHfoADNgfdEoGpKC_cFlr8P70qYc5hr8Lkc5HSRZoK7tcQfy_5j_l_AsVry7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2342867421</pqid></control><display><type>article</type><title>Measurement and State-Dependent Modulation of Hypoglossal Motor Excitability and Responsivity In-Vivo</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Nature Free</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Aggarwal, Jasmin A. ; Liu, Wen-Ying ; Montandon, Gaspard ; Liu, Hattie ; Hughes, Stuart W. ; Horner, Richard L.</creator><creatorcontrib>Aggarwal, Jasmin A. ; Liu, Wen-Ying ; Montandon, Gaspard ; Liu, Hattie ; Hughes, Stuart W. ; Horner, Richard L.</creatorcontrib><description>Motoneurons are the final output pathway for the brain’s influence on behavior. Here we identify properties of hypoglossal motor output to the tongue musculature. Tongue motor control is critical to the pathogenesis of obstructive sleep apnea, a common and serious sleep-related breathing disorder. Studies were performed on mice expressing a light sensitive cation channel exclusively on cholinergic neurons (ChAT-ChR2(H134R)-EYFP). Discrete photostimulations under isoflurane-induced anesthesia from an optical probe positioned above the medullary surface and hypoglossal motor nucleus elicited discrete increases in tongue motor output, with the magnitude of responses dependent on stimulation power (P < 0.001, n = 7) and frequency (P = 0.002, n = 8, with responses to 10 Hz stimulation greater than for 15–25 Hz, P < 0.022). Stimulations during REM sleep elicited significantly reduced responses at powers 3–20 mW compared to non-rapid eye movement (non-REM) sleep and wakefulness (each P < 0.05, n = 7). Response thresholds were also greater in REM sleep (10 mW) compared to non-REM and waking (3 to 5 mW, P < 0.05), and the slopes of the regressions between input photostimulation powers and output motor responses were specifically reduced in REM sleep (P < 0.001). This study identifies that variations in photostimulation input produce tunable changes in hypoglossal motor output
in-vivo
and identifies REM sleep specific suppression of net motor excitability and responsivity.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-57328-4</identifier><identifier>PMID: 31953471</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/2632/1664 ; 631/443/1784 ; 64/60 ; Anesthesia ; Animals ; Apnea ; Bacterial Proteins - genetics ; Channelrhodopsins - genetics ; Choline O-Acetyltransferase - genetics ; Excitability ; Humanities and Social Sciences ; Hypoglossal motor nucleus ; Hypoglossal Nerve - physiology ; Isoflurane ; Isoflurane - administration & dosage ; Luminescent Proteins - genetics ; Male ; Mice ; Mice, Transgenic ; Motor neurons ; Motor Neurons - physiology ; Motor nuclei ; Motor task performance ; multidisciplinary ; Multidisciplinary Sciences ; NREM sleep ; REM sleep ; Science ; Science & Technology ; Science & Technology - Other Topics ; Science (multidisciplinary) ; Sleep ; Sleep and wakefulness ; Sleep disorders ; Sleep, REM ; Tongue ; Tongue - innervation ; Tongue - physiology ; Wakefulness - physiology</subject><ispartof>Scientific reports, 2020-01, Vol.10 (1), p.550-550, Article 550</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000562813800016</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c522t-21993ac50ab1fe1e643d6d0ad83a5d38f89f53de6ffcb258da0fb3431e709fd3</citedby><cites>FETCH-LOGICAL-c522t-21993ac50ab1fe1e643d6d0ad83a5d38f89f53de6ffcb258da0fb3431e709fd3</cites><orcidid>0000-0003-0423-777X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6969049/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6969049/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2115,27929,27930,28253,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31953471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aggarwal, Jasmin A.</creatorcontrib><creatorcontrib>Liu, Wen-Ying</creatorcontrib><creatorcontrib>Montandon, Gaspard</creatorcontrib><creatorcontrib>Liu, Hattie</creatorcontrib><creatorcontrib>Hughes, Stuart W.</creatorcontrib><creatorcontrib>Horner, Richard L.</creatorcontrib><title>Measurement and State-Dependent Modulation of Hypoglossal Motor Excitability and Responsivity In-Vivo</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>SCI REP-UK</addtitle><addtitle>Sci Rep</addtitle><description>Motoneurons are the final output pathway for the brain’s influence on behavior. Here we identify properties of hypoglossal motor output to the tongue musculature. Tongue motor control is critical to the pathogenesis of obstructive sleep apnea, a common and serious sleep-related breathing disorder. Studies were performed on mice expressing a light sensitive cation channel exclusively on cholinergic neurons (ChAT-ChR2(H134R)-EYFP). Discrete photostimulations under isoflurane-induced anesthesia from an optical probe positioned above the medullary surface and hypoglossal motor nucleus elicited discrete increases in tongue motor output, with the magnitude of responses dependent on stimulation power (P < 0.001, n = 7) and frequency (P = 0.002, n = 8, with responses to 10 Hz stimulation greater than for 15–25 Hz, P < 0.022). Stimulations during REM sleep elicited significantly reduced responses at powers 3–20 mW compared to non-rapid eye movement (non-REM) sleep and wakefulness (each P < 0.05, n = 7). Response thresholds were also greater in REM sleep (10 mW) compared to non-REM and waking (3 to 5 mW, P < 0.05), and the slopes of the regressions between input photostimulation powers and output motor responses were specifically reduced in REM sleep (P < 0.001). This study identifies that variations in photostimulation input produce tunable changes in hypoglossal motor output
in-vivo
and identifies REM sleep specific suppression of net motor excitability and responsivity.</description><subject>631/378/2632/1664</subject><subject>631/443/1784</subject><subject>64/60</subject><subject>Anesthesia</subject><subject>Animals</subject><subject>Apnea</subject><subject>Bacterial Proteins - genetics</subject><subject>Channelrhodopsins - genetics</subject><subject>Choline O-Acetyltransferase - genetics</subject><subject>Excitability</subject><subject>Humanities and Social Sciences</subject><subject>Hypoglossal motor nucleus</subject><subject>Hypoglossal Nerve - physiology</subject><subject>Isoflurane</subject><subject>Isoflurane - administration & dosage</subject><subject>Luminescent Proteins - genetics</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Motor neurons</subject><subject>Motor Neurons - physiology</subject><subject>Motor nuclei</subject><subject>Motor task performance</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>NREM sleep</subject><subject>REM sleep</subject><subject>Science</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Sleep</subject><subject>Sleep and wakefulness</subject><subject>Sleep disorders</subject><subject>Sleep, REM</subject><subject>Tongue</subject><subject>Tongue - innervation</subject><subject>Tongue - physiology</subject><subject>Wakefulness - physiology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkV9rFDEUxQdRbKn9Aj7IgC-CjObvTPIiyFptoUXQ4mvITG7WlNlkTTKr--3NdOpafRDzknDv7xzuzamqpxi9woiK14lhLkWDsGx4R4lo2IPqmCDGG0IJeXjvfVSdpnSDyuFEMiwfV0cUS05Zh48ruAKdpggb8LnW3tSfs87QvIMteDPXroKZRp1d8HWw9fl-G9ZjSEmPpZNDrM9-DC7r3o0u728NPkHaBp_cbi5c-OaL24Un1SOrxwSnd_dJdf3-7Hp13lx-_HCxenvZDJyQ3BAsJdUDR7rHFjC0jJrWIG0E1dxQYYW0nBporR16woXRyPaUUQwdktbQk-rNYrud-g2Yocwf9ai20W103Kugnfqz491XtQ471cpWIiaLwYs7gxi-TZCy2rg0wDhqD2FKilCGW9QJMaPP_0JvwhR92W6miGg7RnChyEINsXxaBHsYBiM156iWHFXJUd3mqFgRPbu_xkHyK7UCvFyA79AHmwYHfoADNgfdEoGpKC_cFlr8P70qYc5hr8Lkc5HSRZoK7tcQfy_5j_l_AsVry7Q</recordid><startdate>20200117</startdate><enddate>20200117</enddate><creator>Aggarwal, Jasmin A.</creator><creator>Liu, Wen-Ying</creator><creator>Montandon, Gaspard</creator><creator>Liu, Hattie</creator><creator>Hughes, Stuart W.</creator><creator>Horner, Richard L.</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0423-777X</orcidid></search><sort><creationdate>20200117</creationdate><title>Measurement and State-Dependent Modulation of Hypoglossal Motor Excitability and Responsivity In-Vivo</title><author>Aggarwal, Jasmin A. ; Liu, Wen-Ying ; Montandon, Gaspard ; Liu, Hattie ; Hughes, Stuart W. ; Horner, Richard L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-21993ac50ab1fe1e643d6d0ad83a5d38f89f53de6ffcb258da0fb3431e709fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/378/2632/1664</topic><topic>631/443/1784</topic><topic>64/60</topic><topic>Anesthesia</topic><topic>Animals</topic><topic>Apnea</topic><topic>Bacterial Proteins - genetics</topic><topic>Channelrhodopsins - genetics</topic><topic>Choline O-Acetyltransferase - genetics</topic><topic>Excitability</topic><topic>Humanities and Social Sciences</topic><topic>Hypoglossal motor nucleus</topic><topic>Hypoglossal Nerve - physiology</topic><topic>Isoflurane</topic><topic>Isoflurane - administration & dosage</topic><topic>Luminescent Proteins - genetics</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Motor neurons</topic><topic>Motor Neurons - physiology</topic><topic>Motor nuclei</topic><topic>Motor task performance</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>NREM sleep</topic><topic>REM sleep</topic><topic>Science</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Sleep</topic><topic>Sleep and wakefulness</topic><topic>Sleep disorders</topic><topic>Sleep, REM</topic><topic>Tongue</topic><topic>Tongue - innervation</topic><topic>Tongue - physiology</topic><topic>Wakefulness - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aggarwal, Jasmin A.</creatorcontrib><creatorcontrib>Liu, Wen-Ying</creatorcontrib><creatorcontrib>Montandon, Gaspard</creatorcontrib><creatorcontrib>Liu, Hattie</creatorcontrib><creatorcontrib>Hughes, Stuart W.</creatorcontrib><creatorcontrib>Horner, Richard L.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aggarwal, Jasmin A.</au><au>Liu, Wen-Ying</au><au>Montandon, Gaspard</au><au>Liu, Hattie</au><au>Hughes, Stuart W.</au><au>Horner, Richard L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement and State-Dependent Modulation of Hypoglossal Motor Excitability and Responsivity In-Vivo</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><stitle>SCI REP-UK</stitle><addtitle>Sci Rep</addtitle><date>2020-01-17</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>550</spage><epage>550</epage><pages>550-550</pages><artnum>550</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Motoneurons are the final output pathway for the brain’s influence on behavior. Here we identify properties of hypoglossal motor output to the tongue musculature. Tongue motor control is critical to the pathogenesis of obstructive sleep apnea, a common and serious sleep-related breathing disorder. Studies were performed on mice expressing a light sensitive cation channel exclusively on cholinergic neurons (ChAT-ChR2(H134R)-EYFP). Discrete photostimulations under isoflurane-induced anesthesia from an optical probe positioned above the medullary surface and hypoglossal motor nucleus elicited discrete increases in tongue motor output, with the magnitude of responses dependent on stimulation power (P < 0.001, n = 7) and frequency (P = 0.002, n = 8, with responses to 10 Hz stimulation greater than for 15–25 Hz, P < 0.022). Stimulations during REM sleep elicited significantly reduced responses at powers 3–20 mW compared to non-rapid eye movement (non-REM) sleep and wakefulness (each P < 0.05, n = 7). Response thresholds were also greater in REM sleep (10 mW) compared to non-REM and waking (3 to 5 mW, P < 0.05), and the slopes of the regressions between input photostimulation powers and output motor responses were specifically reduced in REM sleep (P < 0.001). This study identifies that variations in photostimulation input produce tunable changes in hypoglossal motor output
in-vivo
and identifies REM sleep specific suppression of net motor excitability and responsivity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31953471</pmid><doi>10.1038/s41598-019-57328-4</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-0423-777X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-01, Vol.10 (1), p.550-550, Article 550 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_webofscience_primary_000562813800016 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Nature Free; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry |
subjects | 631/378/2632/1664 631/443/1784 64/60 Anesthesia Animals Apnea Bacterial Proteins - genetics Channelrhodopsins - genetics Choline O-Acetyltransferase - genetics Excitability Humanities and Social Sciences Hypoglossal motor nucleus Hypoglossal Nerve - physiology Isoflurane Isoflurane - administration & dosage Luminescent Proteins - genetics Male Mice Mice, Transgenic Motor neurons Motor Neurons - physiology Motor nuclei Motor task performance multidisciplinary Multidisciplinary Sciences NREM sleep REM sleep Science Science & Technology Science & Technology - Other Topics Science (multidisciplinary) Sleep Sleep and wakefulness Sleep disorders Sleep, REM Tongue Tongue - innervation Tongue - physiology Wakefulness - physiology |
title | Measurement and State-Dependent Modulation of Hypoglossal Motor Excitability and Responsivity In-Vivo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A46%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20and%20State-Dependent%20Modulation%20of%20Hypoglossal%20Motor%20Excitability%20and%20Responsivity%20In-Vivo&rft.jtitle=Scientific%20reports&rft.au=Aggarwal,%20Jasmin%20A.&rft.date=2020-01-17&rft.volume=10&rft.issue=1&rft.spage=550&rft.epage=550&rft.pages=550-550&rft.artnum=550&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-57328-4&rft_dat=%3Cproquest_webof%3E2342867421%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2342867421&rft_id=info:pmid/31953471&rfr_iscdi=true |