Measurement and State-Dependent Modulation of Hypoglossal Motor Excitability and Responsivity In-Vivo

Motoneurons are the final output pathway for the brain’s influence on behavior. Here we identify properties of hypoglossal motor output to the tongue musculature. Tongue motor control is critical to the pathogenesis of obstructive sleep apnea, a common and serious sleep-related breathing disorder. S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-01, Vol.10 (1), p.550-550, Article 550
Hauptverfasser: Aggarwal, Jasmin A., Liu, Wen-Ying, Montandon, Gaspard, Liu, Hattie, Hughes, Stuart W., Horner, Richard L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 550
container_issue 1
container_start_page 550
container_title Scientific reports
container_volume 10
creator Aggarwal, Jasmin A.
Liu, Wen-Ying
Montandon, Gaspard
Liu, Hattie
Hughes, Stuart W.
Horner, Richard L.
description Motoneurons are the final output pathway for the brain’s influence on behavior. Here we identify properties of hypoglossal motor output to the tongue musculature. Tongue motor control is critical to the pathogenesis of obstructive sleep apnea, a common and serious sleep-related breathing disorder. Studies were performed on mice expressing a light sensitive cation channel exclusively on cholinergic neurons (ChAT-ChR2(H134R)-EYFP). Discrete photostimulations under isoflurane-induced anesthesia from an optical probe positioned above the medullary surface and hypoglossal motor nucleus elicited discrete increases in tongue motor output, with the magnitude of responses dependent on stimulation power (P 
doi_str_mv 10.1038/s41598-019-57328-4
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000562813800016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2342867421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-21993ac50ab1fe1e643d6d0ad83a5d38f89f53de6ffcb258da0fb3431e709fd3</originalsourceid><addsrcrecordid>eNqNkV9rFDEUxQdRbKn9Aj7IgC-CjObvTPIiyFptoUXQ4mvITG7WlNlkTTKr--3NdOpafRDzknDv7xzuzamqpxi9woiK14lhLkWDsGx4R4lo2IPqmCDGG0IJeXjvfVSdpnSDyuFEMiwfV0cUS05Zh48ruAKdpggb8LnW3tSfs87QvIMteDPXroKZRp1d8HWw9fl-G9ZjSEmPpZNDrM9-DC7r3o0u728NPkHaBp_cbi5c-OaL24Un1SOrxwSnd_dJdf3-7Hp13lx-_HCxenvZDJyQ3BAsJdUDR7rHFjC0jJrWIG0E1dxQYYW0nBporR16woXRyPaUUQwdktbQk-rNYrud-g2Yocwf9ai20W103Kugnfqz491XtQ471cpWIiaLwYs7gxi-TZCy2rg0wDhqD2FKilCGW9QJMaPP_0JvwhR92W6miGg7RnChyEINsXxaBHsYBiM156iWHFXJUd3mqFgRPbu_xkHyK7UCvFyA79AHmwYHfoADNgfdEoGpKC_cFlr8P70qYc5hr8Lkc5HSRZoK7tcQfy_5j_l_AsVry7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2342867421</pqid></control><display><type>article</type><title>Measurement and State-Dependent Modulation of Hypoglossal Motor Excitability and Responsivity In-Vivo</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Nature Free</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Aggarwal, Jasmin A. ; Liu, Wen-Ying ; Montandon, Gaspard ; Liu, Hattie ; Hughes, Stuart W. ; Horner, Richard L.</creator><creatorcontrib>Aggarwal, Jasmin A. ; Liu, Wen-Ying ; Montandon, Gaspard ; Liu, Hattie ; Hughes, Stuart W. ; Horner, Richard L.</creatorcontrib><description>Motoneurons are the final output pathway for the brain’s influence on behavior. Here we identify properties of hypoglossal motor output to the tongue musculature. Tongue motor control is critical to the pathogenesis of obstructive sleep apnea, a common and serious sleep-related breathing disorder. Studies were performed on mice expressing a light sensitive cation channel exclusively on cholinergic neurons (ChAT-ChR2(H134R)-EYFP). Discrete photostimulations under isoflurane-induced anesthesia from an optical probe positioned above the medullary surface and hypoglossal motor nucleus elicited discrete increases in tongue motor output, with the magnitude of responses dependent on stimulation power (P &lt; 0.001, n = 7) and frequency (P = 0.002, n = 8, with responses to 10 Hz stimulation greater than for 15–25 Hz, P &lt; 0.022). Stimulations during REM sleep elicited significantly reduced responses at powers 3–20 mW compared to non-rapid eye movement (non-REM) sleep and wakefulness (each P &lt; 0.05, n = 7). Response thresholds were also greater in REM sleep (10 mW) compared to non-REM and waking (3 to 5 mW, P &lt; 0.05), and the slopes of the regressions between input photostimulation powers and output motor responses were specifically reduced in REM sleep (P &lt; 0.001). This study identifies that variations in photostimulation input produce tunable changes in hypoglossal motor output in-vivo and identifies REM sleep specific suppression of net motor excitability and responsivity.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-57328-4</identifier><identifier>PMID: 31953471</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/2632/1664 ; 631/443/1784 ; 64/60 ; Anesthesia ; Animals ; Apnea ; Bacterial Proteins - genetics ; Channelrhodopsins - genetics ; Choline O-Acetyltransferase - genetics ; Excitability ; Humanities and Social Sciences ; Hypoglossal motor nucleus ; Hypoglossal Nerve - physiology ; Isoflurane ; Isoflurane - administration &amp; dosage ; Luminescent Proteins - genetics ; Male ; Mice ; Mice, Transgenic ; Motor neurons ; Motor Neurons - physiology ; Motor nuclei ; Motor task performance ; multidisciplinary ; Multidisciplinary Sciences ; NREM sleep ; REM sleep ; Science ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Science (multidisciplinary) ; Sleep ; Sleep and wakefulness ; Sleep disorders ; Sleep, REM ; Tongue ; Tongue - innervation ; Tongue - physiology ; Wakefulness - physiology</subject><ispartof>Scientific reports, 2020-01, Vol.10 (1), p.550-550, Article 550</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000562813800016</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c522t-21993ac50ab1fe1e643d6d0ad83a5d38f89f53de6ffcb258da0fb3431e709fd3</citedby><cites>FETCH-LOGICAL-c522t-21993ac50ab1fe1e643d6d0ad83a5d38f89f53de6ffcb258da0fb3431e709fd3</cites><orcidid>0000-0003-0423-777X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6969049/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6969049/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2115,27929,27930,28253,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31953471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aggarwal, Jasmin A.</creatorcontrib><creatorcontrib>Liu, Wen-Ying</creatorcontrib><creatorcontrib>Montandon, Gaspard</creatorcontrib><creatorcontrib>Liu, Hattie</creatorcontrib><creatorcontrib>Hughes, Stuart W.</creatorcontrib><creatorcontrib>Horner, Richard L.</creatorcontrib><title>Measurement and State-Dependent Modulation of Hypoglossal Motor Excitability and Responsivity In-Vivo</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>SCI REP-UK</addtitle><addtitle>Sci Rep</addtitle><description>Motoneurons are the final output pathway for the brain’s influence on behavior. Here we identify properties of hypoglossal motor output to the tongue musculature. Tongue motor control is critical to the pathogenesis of obstructive sleep apnea, a common and serious sleep-related breathing disorder. Studies were performed on mice expressing a light sensitive cation channel exclusively on cholinergic neurons (ChAT-ChR2(H134R)-EYFP). Discrete photostimulations under isoflurane-induced anesthesia from an optical probe positioned above the medullary surface and hypoglossal motor nucleus elicited discrete increases in tongue motor output, with the magnitude of responses dependent on stimulation power (P &lt; 0.001, n = 7) and frequency (P = 0.002, n = 8, with responses to 10 Hz stimulation greater than for 15–25 Hz, P &lt; 0.022). Stimulations during REM sleep elicited significantly reduced responses at powers 3–20 mW compared to non-rapid eye movement (non-REM) sleep and wakefulness (each P &lt; 0.05, n = 7). Response thresholds were also greater in REM sleep (10 mW) compared to non-REM and waking (3 to 5 mW, P &lt; 0.05), and the slopes of the regressions between input photostimulation powers and output motor responses were specifically reduced in REM sleep (P &lt; 0.001). This study identifies that variations in photostimulation input produce tunable changes in hypoglossal motor output in-vivo and identifies REM sleep specific suppression of net motor excitability and responsivity.</description><subject>631/378/2632/1664</subject><subject>631/443/1784</subject><subject>64/60</subject><subject>Anesthesia</subject><subject>Animals</subject><subject>Apnea</subject><subject>Bacterial Proteins - genetics</subject><subject>Channelrhodopsins - genetics</subject><subject>Choline O-Acetyltransferase - genetics</subject><subject>Excitability</subject><subject>Humanities and Social Sciences</subject><subject>Hypoglossal motor nucleus</subject><subject>Hypoglossal Nerve - physiology</subject><subject>Isoflurane</subject><subject>Isoflurane - administration &amp; dosage</subject><subject>Luminescent Proteins - genetics</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Motor neurons</subject><subject>Motor Neurons - physiology</subject><subject>Motor nuclei</subject><subject>Motor task performance</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>NREM sleep</subject><subject>REM sleep</subject><subject>Science</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Sleep</subject><subject>Sleep and wakefulness</subject><subject>Sleep disorders</subject><subject>Sleep, REM</subject><subject>Tongue</subject><subject>Tongue - innervation</subject><subject>Tongue - physiology</subject><subject>Wakefulness - physiology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkV9rFDEUxQdRbKn9Aj7IgC-CjObvTPIiyFptoUXQ4mvITG7WlNlkTTKr--3NdOpafRDzknDv7xzuzamqpxi9woiK14lhLkWDsGx4R4lo2IPqmCDGG0IJeXjvfVSdpnSDyuFEMiwfV0cUS05Zh48ruAKdpggb8LnW3tSfs87QvIMteDPXroKZRp1d8HWw9fl-G9ZjSEmPpZNDrM9-DC7r3o0u728NPkHaBp_cbi5c-OaL24Un1SOrxwSnd_dJdf3-7Hp13lx-_HCxenvZDJyQ3BAsJdUDR7rHFjC0jJrWIG0E1dxQYYW0nBporR16woXRyPaUUQwdktbQk-rNYrud-g2Yocwf9ai20W103Kugnfqz491XtQ471cpWIiaLwYs7gxi-TZCy2rg0wDhqD2FKilCGW9QJMaPP_0JvwhR92W6miGg7RnChyEINsXxaBHsYBiM156iWHFXJUd3mqFgRPbu_xkHyK7UCvFyA79AHmwYHfoADNgfdEoGpKC_cFlr8P70qYc5hr8Lkc5HSRZoK7tcQfy_5j_l_AsVry7Q</recordid><startdate>20200117</startdate><enddate>20200117</enddate><creator>Aggarwal, Jasmin A.</creator><creator>Liu, Wen-Ying</creator><creator>Montandon, Gaspard</creator><creator>Liu, Hattie</creator><creator>Hughes, Stuart W.</creator><creator>Horner, Richard L.</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0423-777X</orcidid></search><sort><creationdate>20200117</creationdate><title>Measurement and State-Dependent Modulation of Hypoglossal Motor Excitability and Responsivity In-Vivo</title><author>Aggarwal, Jasmin A. ; Liu, Wen-Ying ; Montandon, Gaspard ; Liu, Hattie ; Hughes, Stuart W. ; Horner, Richard L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-21993ac50ab1fe1e643d6d0ad83a5d38f89f53de6ffcb258da0fb3431e709fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/378/2632/1664</topic><topic>631/443/1784</topic><topic>64/60</topic><topic>Anesthesia</topic><topic>Animals</topic><topic>Apnea</topic><topic>Bacterial Proteins - genetics</topic><topic>Channelrhodopsins - genetics</topic><topic>Choline O-Acetyltransferase - genetics</topic><topic>Excitability</topic><topic>Humanities and Social Sciences</topic><topic>Hypoglossal motor nucleus</topic><topic>Hypoglossal Nerve - physiology</topic><topic>Isoflurane</topic><topic>Isoflurane - administration &amp; dosage</topic><topic>Luminescent Proteins - genetics</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Motor neurons</topic><topic>Motor Neurons - physiology</topic><topic>Motor nuclei</topic><topic>Motor task performance</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>NREM sleep</topic><topic>REM sleep</topic><topic>Science</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Sleep</topic><topic>Sleep and wakefulness</topic><topic>Sleep disorders</topic><topic>Sleep, REM</topic><topic>Tongue</topic><topic>Tongue - innervation</topic><topic>Tongue - physiology</topic><topic>Wakefulness - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aggarwal, Jasmin A.</creatorcontrib><creatorcontrib>Liu, Wen-Ying</creatorcontrib><creatorcontrib>Montandon, Gaspard</creatorcontrib><creatorcontrib>Liu, Hattie</creatorcontrib><creatorcontrib>Hughes, Stuart W.</creatorcontrib><creatorcontrib>Horner, Richard L.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aggarwal, Jasmin A.</au><au>Liu, Wen-Ying</au><au>Montandon, Gaspard</au><au>Liu, Hattie</au><au>Hughes, Stuart W.</au><au>Horner, Richard L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement and State-Dependent Modulation of Hypoglossal Motor Excitability and Responsivity In-Vivo</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><stitle>SCI REP-UK</stitle><addtitle>Sci Rep</addtitle><date>2020-01-17</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>550</spage><epage>550</epage><pages>550-550</pages><artnum>550</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Motoneurons are the final output pathway for the brain’s influence on behavior. Here we identify properties of hypoglossal motor output to the tongue musculature. Tongue motor control is critical to the pathogenesis of obstructive sleep apnea, a common and serious sleep-related breathing disorder. Studies were performed on mice expressing a light sensitive cation channel exclusively on cholinergic neurons (ChAT-ChR2(H134R)-EYFP). Discrete photostimulations under isoflurane-induced anesthesia from an optical probe positioned above the medullary surface and hypoglossal motor nucleus elicited discrete increases in tongue motor output, with the magnitude of responses dependent on stimulation power (P &lt; 0.001, n = 7) and frequency (P = 0.002, n = 8, with responses to 10 Hz stimulation greater than for 15–25 Hz, P &lt; 0.022). Stimulations during REM sleep elicited significantly reduced responses at powers 3–20 mW compared to non-rapid eye movement (non-REM) sleep and wakefulness (each P &lt; 0.05, n = 7). Response thresholds were also greater in REM sleep (10 mW) compared to non-REM and waking (3 to 5 mW, P &lt; 0.05), and the slopes of the regressions between input photostimulation powers and output motor responses were specifically reduced in REM sleep (P &lt; 0.001). This study identifies that variations in photostimulation input produce tunable changes in hypoglossal motor output in-vivo and identifies REM sleep specific suppression of net motor excitability and responsivity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31953471</pmid><doi>10.1038/s41598-019-57328-4</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-0423-777X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-01, Vol.10 (1), p.550-550, Article 550
issn 2045-2322
2045-2322
language eng
recordid cdi_webofscience_primary_000562813800016
source MEDLINE; DOAJ Directory of Open Access Journals; Nature Free; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry
subjects 631/378/2632/1664
631/443/1784
64/60
Anesthesia
Animals
Apnea
Bacterial Proteins - genetics
Channelrhodopsins - genetics
Choline O-Acetyltransferase - genetics
Excitability
Humanities and Social Sciences
Hypoglossal motor nucleus
Hypoglossal Nerve - physiology
Isoflurane
Isoflurane - administration & dosage
Luminescent Proteins - genetics
Male
Mice
Mice, Transgenic
Motor neurons
Motor Neurons - physiology
Motor nuclei
Motor task performance
multidisciplinary
Multidisciplinary Sciences
NREM sleep
REM sleep
Science
Science & Technology
Science & Technology - Other Topics
Science (multidisciplinary)
Sleep
Sleep and wakefulness
Sleep disorders
Sleep, REM
Tongue
Tongue - innervation
Tongue - physiology
Wakefulness - physiology
title Measurement and State-Dependent Modulation of Hypoglossal Motor Excitability and Responsivity In-Vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A46%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20and%20State-Dependent%20Modulation%20of%20Hypoglossal%20Motor%20Excitability%20and%20Responsivity%20In-Vivo&rft.jtitle=Scientific%20reports&rft.au=Aggarwal,%20Jasmin%20A.&rft.date=2020-01-17&rft.volume=10&rft.issue=1&rft.spage=550&rft.epage=550&rft.pages=550-550&rft.artnum=550&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-57328-4&rft_dat=%3Cproquest_webof%3E2342867421%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2342867421&rft_id=info:pmid/31953471&rfr_iscdi=true