Upper extremity prosthetic selection influences loading of transhumeral osseointegrated systems

Percutaneous osseointegrated (OI) implants are increasingly viable as an alternative to socket suspension of prosthetic limbs. Upper extremity prostheses have also become more complex to better replicate hand and arm function and attempt to recreate pre-amputation functional levels. With more functi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-08, Vol.15 (8), p.e0237179-e0237179, Article 0237179
Hauptverfasser: Taylor, Carolyn E., Drew, Alex J., Zhang, Yue, Qiu, Yuqing, Bachus, Kent N., Foreman, K. Bo, Henninger, Heath B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Percutaneous osseointegrated (OI) implants are increasingly viable as an alternative to socket suspension of prosthetic limbs. Upper extremity prostheses have also become more complex to better replicate hand and arm function and attempt to recreate pre-amputation functional levels. With more functionality comes heavier devices that put more stress on the bone-implant interface, which could be an issue for implant stability. This study quantified transhumeral loading at defined amputation levels using four simulated prosthetic limb-types: (1) body powered hook, (2) myoelectric hook, (3) myoelectric hand, and (4) advanced prosthetic limb. Computational models were constructed to replicate the weight distribution of each prosthesis type, then applied to motion capture data collected during Advanced Activities of Daily Living (AADLs). For activities that did not include a handheld weight, the body powered prosthesis bending moments were 13-33% (range of means for each activity across amputation levels) of the intact arm moments (reference 100%), torsional moments were 12-15%, and axial pullout forces were 30-40% of the intact case (p
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0237179