Multimode entanglement generation with dual-pumped four-wave-mixing of Rubidium Atoms

Multimode entanglement is essential for the generation of quantum networks, which plays a central role in quantum information processing and quantum metrology. Here, we study the spatial multimode entanglement characteristics of the large scale quantum states via a dual-pumped four-wave-mixing (FWM)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2020-08, Vol.28 (17), p.25278-25292
Hauptverfasser: Cai, Yin, Hao, Ling, Zhang, Da, Liu, Yang, Luo, Binshuo, Zheng, Zhan, Li, Feng, Zhang, Yanpeng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multimode entanglement is essential for the generation of quantum networks, which plays a central role in quantum information processing and quantum metrology. Here, we study the spatial multimode entanglement characteristics of the large scale quantum states via a dual-pumped four-wave-mixing (FWM) process of Rubidium atomics vapors. A linear mode transform approach is applied to solve the four- and six-mode Gaussian states and the analytical input-output relations are presented. Moreover, via reconstructing the full covariance matrix of the produced states, versatile entanglement with from two up to six modes is analyzed. The results show that most of the 1 versus n-mode and m versus n-mode states are entangled, and the amount of entanglement can be regulated due to the competitions of mode components caused by different interaction strengths of co-existing FWMs. Our study could be applied for any multimode Gaussian states with a quadratic Hamiltonian.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.396168