Roadmap for quantum simulation of the fractional quantum Hall effect
A major motivation for building a quantum computer is that it provides a tool to efficiently simulate strongly correlated quantum systems. In this paper, we present a detailed roadmap on how to simulate a two-dimensional electron gas-cooled to absolute zero and pierced by a strong transversal magnet...
Gespeichert in:
Veröffentlicht in: | Physical review. A 2020-08, Vol.102 (2), Article 022607 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Physical review. A |
container_volume | 102 |
creator | Kaicher, Michael P. Jaeger, Simon B. Dallaire-Demers, Pierre-Luc Wilhelm, Frank K. |
description | A major motivation for building a quantum computer is that it provides a tool to efficiently simulate strongly correlated quantum systems. In this paper, we present a detailed roadmap on how to simulate a two-dimensional electron gas-cooled to absolute zero and pierced by a strong transversal magnetic field-on a quantum computer. This system describes the setting of the fractional quantum Hall effect, one of the pillars of modern condensed-matter theory. We give analytical expressions for the two-body integrals that allow for mixing between N Landau levels at a cutoff M in angular momentum and give gate-count estimates for the efficient simulation of the energy spectrum of the Hamiltonian on an error-corrected quantum computer. We then focus on studying efficiently preparable initial states and their overlap with the exact ground state for noisy as well as error-corrected quantum computers. By performing an imaginary time evolution of the covariance matrix, we find the generalized Hartree-Fock solution to the many-body problem and study how a multireference state expansion affects the state overlap. We perform small-system numerical simulations to study the quality of the two initial state Ansatze in the lowest Landau level approximation. |
doi_str_mv | 10.1103/PhysRevA.102.022607 |
format | Article |
fullrecord | <record><control><sourceid>webofscience_cross</sourceid><recordid>TN_cdi_webofscience_primary_000560651300001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>000560651300001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-f5de3f1f6977a49d8408685f8364aa41ff93ae9fc06b5694639b9f2c30bcc23b3</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhhdRsNT-Ai97l9TZj2yzxxI_KhSUouew2e7QSJKt2Y3Sf29qNWdPM_Myz8A8hFwzmDMG4vZldwgb97mcM-Bz4FzB4oxMuFQ60VrI87Hn6pLMQngHAJZqrYSakLuNN9vG7Cn6jn70po19Q0PV9LWJlW-pRxp3jmJn7HE29bi0MnVNHaKz8YpcoKmDm_3WKXl7uH_NV8n6-fEpX64Ty6WOCaZbJ5Ch0ouFkXqbSchUlmImlDRGMkQtjNNoQZWp0lIJXWrkVkBpLRelmBJxums7H0LnsNh3VWO6Q8GgOLoo_lwMAS9OLgYqO1FfrvQYbOVa60ZykJEqUCkTcPSSV_Hn8dz3bRzQm_-j4hv2PHUI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Roadmap for quantum simulation of the fractional quantum Hall effect</title><source>American Physical Society Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Kaicher, Michael P. ; Jaeger, Simon B. ; Dallaire-Demers, Pierre-Luc ; Wilhelm, Frank K.</creator><creatorcontrib>Kaicher, Michael P. ; Jaeger, Simon B. ; Dallaire-Demers, Pierre-Luc ; Wilhelm, Frank K.</creatorcontrib><description>A major motivation for building a quantum computer is that it provides a tool to efficiently simulate strongly correlated quantum systems. In this paper, we present a detailed roadmap on how to simulate a two-dimensional electron gas-cooled to absolute zero and pierced by a strong transversal magnetic field-on a quantum computer. This system describes the setting of the fractional quantum Hall effect, one of the pillars of modern condensed-matter theory. We give analytical expressions for the two-body integrals that allow for mixing between N Landau levels at a cutoff M in angular momentum and give gate-count estimates for the efficient simulation of the energy spectrum of the Hamiltonian on an error-corrected quantum computer. We then focus on studying efficiently preparable initial states and their overlap with the exact ground state for noisy as well as error-corrected quantum computers. By performing an imaginary time evolution of the covariance matrix, we find the generalized Hartree-Fock solution to the many-body problem and study how a multireference state expansion affects the state overlap. We perform small-system numerical simulations to study the quality of the two initial state Ansatze in the lowest Landau level approximation.</description><identifier>ISSN: 2469-9926</identifier><identifier>EISSN: 2469-9934</identifier><identifier>DOI: 10.1103/PhysRevA.102.022607</identifier><language>eng</language><publisher>COLLEGE PK: Amer Physical Soc</publisher><subject>Optics ; Physical Sciences ; Physics ; Physics, Atomic, Molecular & Chemical ; Science & Technology</subject><ispartof>Physical review. A, 2020-08, Vol.102 (2), Article 022607</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000560651300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c249t-f5de3f1f6977a49d8408685f8364aa41ff93ae9fc06b5694639b9f2c30bcc23b3</citedby><cites>FETCH-LOGICAL-c249t-f5de3f1f6977a49d8408685f8364aa41ff93ae9fc06b5694639b9f2c30bcc23b3</cites><orcidid>0000-0002-9316-5597 ; 0000-0002-2585-5246 ; 0000-0001-7986-5127</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,2878,2879,27931,27932,28255</link.rule.ids></links><search><creatorcontrib>Kaicher, Michael P.</creatorcontrib><creatorcontrib>Jaeger, Simon B.</creatorcontrib><creatorcontrib>Dallaire-Demers, Pierre-Luc</creatorcontrib><creatorcontrib>Wilhelm, Frank K.</creatorcontrib><title>Roadmap for quantum simulation of the fractional quantum Hall effect</title><title>Physical review. A</title><addtitle>PHYS REV A</addtitle><description>A major motivation for building a quantum computer is that it provides a tool to efficiently simulate strongly correlated quantum systems. In this paper, we present a detailed roadmap on how to simulate a two-dimensional electron gas-cooled to absolute zero and pierced by a strong transversal magnetic field-on a quantum computer. This system describes the setting of the fractional quantum Hall effect, one of the pillars of modern condensed-matter theory. We give analytical expressions for the two-body integrals that allow for mixing between N Landau levels at a cutoff M in angular momentum and give gate-count estimates for the efficient simulation of the energy spectrum of the Hamiltonian on an error-corrected quantum computer. We then focus on studying efficiently preparable initial states and their overlap with the exact ground state for noisy as well as error-corrected quantum computers. By performing an imaginary time evolution of the covariance matrix, we find the generalized Hartree-Fock solution to the many-body problem and study how a multireference state expansion affects the state overlap. We perform small-system numerical simulations to study the quality of the two initial state Ansatze in the lowest Landau level approximation.</description><subject>Optics</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Atomic, Molecular & Chemical</subject><subject>Science & Technology</subject><issn>2469-9926</issn><issn>2469-9934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkE1Lw0AQhhdRsNT-Ai97l9TZj2yzxxI_KhSUouew2e7QSJKt2Y3Sf29qNWdPM_Myz8A8hFwzmDMG4vZldwgb97mcM-Bz4FzB4oxMuFQ60VrI87Hn6pLMQngHAJZqrYSakLuNN9vG7Cn6jn70po19Q0PV9LWJlW-pRxp3jmJn7HE29bi0MnVNHaKz8YpcoKmDm_3WKXl7uH_NV8n6-fEpX64Ty6WOCaZbJ5Ch0ouFkXqbSchUlmImlDRGMkQtjNNoQZWp0lIJXWrkVkBpLRelmBJxums7H0LnsNh3VWO6Q8GgOLoo_lwMAS9OLgYqO1FfrvQYbOVa60ZykJEqUCkTcPSSV_Hn8dz3bRzQm_-j4hv2PHUI</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Kaicher, Michael P.</creator><creator>Jaeger, Simon B.</creator><creator>Dallaire-Demers, Pierre-Luc</creator><creator>Wilhelm, Frank K.</creator><general>Amer Physical Soc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9316-5597</orcidid><orcidid>https://orcid.org/0000-0002-2585-5246</orcidid><orcidid>https://orcid.org/0000-0001-7986-5127</orcidid></search><sort><creationdate>20200801</creationdate><title>Roadmap for quantum simulation of the fractional quantum Hall effect</title><author>Kaicher, Michael P. ; Jaeger, Simon B. ; Dallaire-Demers, Pierre-Luc ; Wilhelm, Frank K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-f5de3f1f6977a49d8408685f8364aa41ff93ae9fc06b5694639b9f2c30bcc23b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Optics</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Atomic, Molecular & Chemical</topic><topic>Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaicher, Michael P.</creatorcontrib><creatorcontrib>Jaeger, Simon B.</creatorcontrib><creatorcontrib>Dallaire-Demers, Pierre-Luc</creatorcontrib><creatorcontrib>Wilhelm, Frank K.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Physical review. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaicher, Michael P.</au><au>Jaeger, Simon B.</au><au>Dallaire-Demers, Pierre-Luc</au><au>Wilhelm, Frank K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Roadmap for quantum simulation of the fractional quantum Hall effect</atitle><jtitle>Physical review. A</jtitle><stitle>PHYS REV A</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>102</volume><issue>2</issue><artnum>022607</artnum><issn>2469-9926</issn><eissn>2469-9934</eissn><abstract>A major motivation for building a quantum computer is that it provides a tool to efficiently simulate strongly correlated quantum systems. In this paper, we present a detailed roadmap on how to simulate a two-dimensional electron gas-cooled to absolute zero and pierced by a strong transversal magnetic field-on a quantum computer. This system describes the setting of the fractional quantum Hall effect, one of the pillars of modern condensed-matter theory. We give analytical expressions for the two-body integrals that allow for mixing between N Landau levels at a cutoff M in angular momentum and give gate-count estimates for the efficient simulation of the energy spectrum of the Hamiltonian on an error-corrected quantum computer. We then focus on studying efficiently preparable initial states and their overlap with the exact ground state for noisy as well as error-corrected quantum computers. By performing an imaginary time evolution of the covariance matrix, we find the generalized Hartree-Fock solution to the many-body problem and study how a multireference state expansion affects the state overlap. We perform small-system numerical simulations to study the quality of the two initial state Ansatze in the lowest Landau level approximation.</abstract><cop>COLLEGE PK</cop><pub>Amer Physical Soc</pub><doi>10.1103/PhysRevA.102.022607</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-9316-5597</orcidid><orcidid>https://orcid.org/0000-0002-2585-5246</orcidid><orcidid>https://orcid.org/0000-0001-7986-5127</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9926 |
ispartof | Physical review. A, 2020-08, Vol.102 (2), Article 022607 |
issn | 2469-9926 2469-9934 |
language | eng |
recordid | cdi_webofscience_primary_000560651300001CitationCount |
source | American Physical Society Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Optics Physical Sciences Physics Physics, Atomic, Molecular & Chemical Science & Technology |
title | Roadmap for quantum simulation of the fractional quantum Hall effect |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-07T20%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-webofscience_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Roadmap%20for%20quantum%20simulation%20of%20the%20fractional%20quantum%20Hall%20effect&rft.jtitle=Physical%20review.%20A&rft.au=Kaicher,%20Michael%20P.&rft.date=2020-08-01&rft.volume=102&rft.issue=2&rft.artnum=022607&rft.issn=2469-9926&rft.eissn=2469-9934&rft_id=info:doi/10.1103/PhysRevA.102.022607&rft_dat=%3Cwebofscience_cross%3E000560651300001%3C/webofscience_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |