Synthesis of Methane Observations Across Scales: Strategies for Deploying a Multitiered Observing Network
Regional methane emissions monitoring is rapidly expanding with increased coverage of surface, airborne, and satellite instruments. We pilot a multitiered observing system in the Los Angeles Basin. We combine surface methane measurements from the Los Angeles Megacities Carbon Project, mountaintop re...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2020-04, Vol.47 (7), p.n/a, Article 2020 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Geophysical research letters |
container_volume | 47 |
creator | Cusworth, Daniel H. Duren, Riley M. Yadav, Vineet Thorpe, Andrew K. Verhulst, Kristal Sander, Stanley Hopkins, Francesca Rafiq, Talha Miller, Charles E. |
description | Regional methane emissions monitoring is rapidly expanding with increased coverage of surface, airborne, and satellite instruments. We pilot a multitiered observing system in the Los Angeles Basin. We combine surface methane measurements from the Los Angeles Megacities Carbon Project, mountaintop retrievals from the CLARS‐FTS instrument, and space‐based XCH4 retrievals from the TROPOMI instrument into a single monitoring framework. We simulate these observations using a high‐resolution tracer transport model. Using inverse methods, we compare the sensitivity of each observing system component to various emissions sources. Combining multiple observing system into one framework allows for increased spatial and temporal sensitivity to methane emissions. We find a close correspondence between these inverse flux trends and independent airborne AVIRIS‐NG methane plume trends over a large landfill in the Los Angeles Basin. These results show that multitiered observing systems can reveal insights about sub‐basin scale methane emissions, which can be used to drive decision support.
Plain Language Summary
Methane is a powerful greenhouse gas. In order to effectively reduce its atmospheric concentrations, we need advanced methane observing strategies to pinpoint large emissions on small spatial scales. In this study, we combine surface, mountaintop, and satellite observations of methane over Los Angeles (called a multitiered observing system) and use these data to infer information about urban methane emissions. We assess how much information each component of the observing system provides to this analytics system. We validate our findings with independent airborne methane fluxes derived from the AVIRIS‐NG airborne instrument over a large landfill. Both systems detected large emission reductions that resulted from improved management practices. A multitiered observing and analytics system can potentially provide sub‐basin scale decision support for methane mitigation.
Key Points
A multitiered (surface, airborne, mountaintop, and satellite) methane tiered observing system is created for the Los Angeles Basin
Combining multiple observing system into a single framework allows for increased spatial and temporal sensitivity to methane emissions
Inverse fluxes from the multitiered system over a large landfill are validated with independent airborne observations |
doi_str_mv | 10.1029/2020GL087869 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000560367600025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2390324603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3065-4bade7a7c61a61719303d800bcd3acac02d9e65bef4adf7006d17437263ac5933</originalsourceid><addsrcrecordid>eNqNkEFPGzEQhS1UJFLojR9giWMbGNu7dtxblJaAlIDUtOeV1ztLnG7Xqe2A8u9xSIQ4IU4eeb73ZuYRcs7gkgHXVxw4TGcwUiOpj8iA6aIYjgDUJzIA0LnmSp6QzzGuAECAYAPiFts-LTG6SH1L55iWpkd6X0cMjyY530c6tsHHSBfWdBi_00UKJuGDw0hbH-gPXHd-6_oHauh80yWXHAZsDha7_ztMTz78PSPHrekifjm8p-TP9c_fk5vh7H56OxnPhlaALIdFbRpURlnJjGSK6bxnk4-obSOMNRZ4o1GWNbaFaVoFIBumCqG4zO1SC3FKLva-6-D_bzCmauU3oc8jKy40CF5I2FHf9tTLcQHbah3cPxO2FYNqF2b1NsyMf93jT1j7NlqHvcVXSU6zzKZSyVzxMtOjj9MTl16CnvhNn7KUH6Suw-27S1XTX7Pso0vxDIAelv4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390324603</pqid></control><display><type>article</type><title>Synthesis of Methane Observations Across Scales: Strategies for Deploying a Multitiered Observing Network</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Wiley Online Library (Open Access Collection)</source><creator>Cusworth, Daniel H. ; Duren, Riley M. ; Yadav, Vineet ; Thorpe, Andrew K. ; Verhulst, Kristal ; Sander, Stanley ; Hopkins, Francesca ; Rafiq, Talha ; Miller, Charles E.</creator><creatorcontrib>Cusworth, Daniel H. ; Duren, Riley M. ; Yadav, Vineet ; Thorpe, Andrew K. ; Verhulst, Kristal ; Sander, Stanley ; Hopkins, Francesca ; Rafiq, Talha ; Miller, Charles E.</creatorcontrib><description>Regional methane emissions monitoring is rapidly expanding with increased coverage of surface, airborne, and satellite instruments. We pilot a multitiered observing system in the Los Angeles Basin. We combine surface methane measurements from the Los Angeles Megacities Carbon Project, mountaintop retrievals from the CLARS‐FTS instrument, and space‐based XCH4 retrievals from the TROPOMI instrument into a single monitoring framework. We simulate these observations using a high‐resolution tracer transport model. Using inverse methods, we compare the sensitivity of each observing system component to various emissions sources. Combining multiple observing system into one framework allows for increased spatial and temporal sensitivity to methane emissions. We find a close correspondence between these inverse flux trends and independent airborne AVIRIS‐NG methane plume trends over a large landfill in the Los Angeles Basin. These results show that multitiered observing systems can reveal insights about sub‐basin scale methane emissions, which can be used to drive decision support.
Plain Language Summary
Methane is a powerful greenhouse gas. In order to effectively reduce its atmospheric concentrations, we need advanced methane observing strategies to pinpoint large emissions on small spatial scales. In this study, we combine surface, mountaintop, and satellite observations of methane over Los Angeles (called a multitiered observing system) and use these data to infer information about urban methane emissions. We assess how much information each component of the observing system provides to this analytics system. We validate our findings with independent airborne methane fluxes derived from the AVIRIS‐NG airborne instrument over a large landfill. Both systems detected large emission reductions that resulted from improved management practices. A multitiered observing and analytics system can potentially provide sub‐basin scale decision support for methane mitigation.
Key Points
A multitiered (surface, airborne, mountaintop, and satellite) methane tiered observing system is created for the Los Angeles Basin
Combining multiple observing system into a single framework allows for increased spatial and temporal sensitivity to methane emissions
Inverse fluxes from the multitiered system over a large landfill are validated with independent airborne observations</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2020GL087869</identifier><language>eng</language><publisher>WASHINGTON: Amer Geophysical Union</publisher><subject>Airborne instruments ; Airborne observation ; AVIRIS ; Computer simulation ; Decision analysis ; Decision support systems ; emissions ; Emissions control ; Fluxes ; Geology ; Geosciences, Multidisciplinary ; Greenhouse effect ; Greenhouse gases ; Instruments ; inverse ; Landfill ; Landfill gas ; Landfills ; Megacities ; Methane ; Methane emissions ; Mitigation ; multitier ; Physical Sciences ; Pollution monitoring ; Satellite instruments ; Satellite observation ; Satellite-borne instruments ; Satellites ; Science & Technology ; Sensitivity ; Tracer transport ; Tracers ; Trends ; urban ; Waste disposal sites</subject><ispartof>Geophysical research letters, 2020-04, Vol.47 (7), p.n/a, Article 2020</ispartof><rights>2020. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>21</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000560367600025</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c3065-4bade7a7c61a61719303d800bcd3acac02d9e65bef4adf7006d17437263ac5933</citedby><cites>FETCH-LOGICAL-c3065-4bade7a7c61a61719303d800bcd3acac02d9e65bef4adf7006d17437263ac5933</cites><orcidid>0000-0003-4723-5280 ; 0000-0003-1424-3620 ; 0000-0002-9380-4838 ; 0000-0002-2805-3345 ; 0000-0001-5678-9678 ; 0000-0001-7968-5433 ; 0000-0003-1348-3219 ; 0000-0003-0158-977X ; 0000-0002-6110-7675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020GL087869$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020GL087869$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,1435,11521,27931,27932,28255,45581,45582,46416,46475,46840,46899</link.rule.ids></links><search><creatorcontrib>Cusworth, Daniel H.</creatorcontrib><creatorcontrib>Duren, Riley M.</creatorcontrib><creatorcontrib>Yadav, Vineet</creatorcontrib><creatorcontrib>Thorpe, Andrew K.</creatorcontrib><creatorcontrib>Verhulst, Kristal</creatorcontrib><creatorcontrib>Sander, Stanley</creatorcontrib><creatorcontrib>Hopkins, Francesca</creatorcontrib><creatorcontrib>Rafiq, Talha</creatorcontrib><creatorcontrib>Miller, Charles E.</creatorcontrib><title>Synthesis of Methane Observations Across Scales: Strategies for Deploying a Multitiered Observing Network</title><title>Geophysical research letters</title><addtitle>GEOPHYS RES LETT</addtitle><description>Regional methane emissions monitoring is rapidly expanding with increased coverage of surface, airborne, and satellite instruments. We pilot a multitiered observing system in the Los Angeles Basin. We combine surface methane measurements from the Los Angeles Megacities Carbon Project, mountaintop retrievals from the CLARS‐FTS instrument, and space‐based XCH4 retrievals from the TROPOMI instrument into a single monitoring framework. We simulate these observations using a high‐resolution tracer transport model. Using inverse methods, we compare the sensitivity of each observing system component to various emissions sources. Combining multiple observing system into one framework allows for increased spatial and temporal sensitivity to methane emissions. We find a close correspondence between these inverse flux trends and independent airborne AVIRIS‐NG methane plume trends over a large landfill in the Los Angeles Basin. These results show that multitiered observing systems can reveal insights about sub‐basin scale methane emissions, which can be used to drive decision support.
Plain Language Summary
Methane is a powerful greenhouse gas. In order to effectively reduce its atmospheric concentrations, we need advanced methane observing strategies to pinpoint large emissions on small spatial scales. In this study, we combine surface, mountaintop, and satellite observations of methane over Los Angeles (called a multitiered observing system) and use these data to infer information about urban methane emissions. We assess how much information each component of the observing system provides to this analytics system. We validate our findings with independent airborne methane fluxes derived from the AVIRIS‐NG airborne instrument over a large landfill. Both systems detected large emission reductions that resulted from improved management practices. A multitiered observing and analytics system can potentially provide sub‐basin scale decision support for methane mitigation.
Key Points
A multitiered (surface, airborne, mountaintop, and satellite) methane tiered observing system is created for the Los Angeles Basin
Combining multiple observing system into a single framework allows for increased spatial and temporal sensitivity to methane emissions
Inverse fluxes from the multitiered system over a large landfill are validated with independent airborne observations</description><subject>Airborne instruments</subject><subject>Airborne observation</subject><subject>AVIRIS</subject><subject>Computer simulation</subject><subject>Decision analysis</subject><subject>Decision support systems</subject><subject>emissions</subject><subject>Emissions control</subject><subject>Fluxes</subject><subject>Geology</subject><subject>Geosciences, Multidisciplinary</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Instruments</subject><subject>inverse</subject><subject>Landfill</subject><subject>Landfill gas</subject><subject>Landfills</subject><subject>Megacities</subject><subject>Methane</subject><subject>Methane emissions</subject><subject>Mitigation</subject><subject>multitier</subject><subject>Physical Sciences</subject><subject>Pollution monitoring</subject><subject>Satellite instruments</subject><subject>Satellite observation</subject><subject>Satellite-borne instruments</subject><subject>Satellites</subject><subject>Science & Technology</subject><subject>Sensitivity</subject><subject>Tracer transport</subject><subject>Tracers</subject><subject>Trends</subject><subject>urban</subject><subject>Waste disposal sites</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkEFPGzEQhS1UJFLojR9giWMbGNu7dtxblJaAlIDUtOeV1ztLnG7Xqe2A8u9xSIQ4IU4eeb73ZuYRcs7gkgHXVxw4TGcwUiOpj8iA6aIYjgDUJzIA0LnmSp6QzzGuAECAYAPiFts-LTG6SH1L55iWpkd6X0cMjyY530c6tsHHSBfWdBi_00UKJuGDw0hbH-gPXHd-6_oHauh80yWXHAZsDha7_ztMTz78PSPHrekifjm8p-TP9c_fk5vh7H56OxnPhlaALIdFbRpURlnJjGSK6bxnk4-obSOMNRZ4o1GWNbaFaVoFIBumCqG4zO1SC3FKLva-6-D_bzCmauU3oc8jKy40CF5I2FHf9tTLcQHbah3cPxO2FYNqF2b1NsyMf93jT1j7NlqHvcVXSU6zzKZSyVzxMtOjj9MTl16CnvhNn7KUH6Suw-27S1XTX7Pso0vxDIAelv4</recordid><startdate>20200416</startdate><enddate>20200416</enddate><creator>Cusworth, Daniel H.</creator><creator>Duren, Riley M.</creator><creator>Yadav, Vineet</creator><creator>Thorpe, Andrew K.</creator><creator>Verhulst, Kristal</creator><creator>Sander, Stanley</creator><creator>Hopkins, Francesca</creator><creator>Rafiq, Talha</creator><creator>Miller, Charles E.</creator><general>Amer Geophysical Union</general><general>John Wiley & Sons, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4723-5280</orcidid><orcidid>https://orcid.org/0000-0003-1424-3620</orcidid><orcidid>https://orcid.org/0000-0002-9380-4838</orcidid><orcidid>https://orcid.org/0000-0002-2805-3345</orcidid><orcidid>https://orcid.org/0000-0001-5678-9678</orcidid><orcidid>https://orcid.org/0000-0001-7968-5433</orcidid><orcidid>https://orcid.org/0000-0003-1348-3219</orcidid><orcidid>https://orcid.org/0000-0003-0158-977X</orcidid><orcidid>https://orcid.org/0000-0002-6110-7675</orcidid></search><sort><creationdate>20200416</creationdate><title>Synthesis of Methane Observations Across Scales: Strategies for Deploying a Multitiered Observing Network</title><author>Cusworth, Daniel H. ; Duren, Riley M. ; Yadav, Vineet ; Thorpe, Andrew K. ; Verhulst, Kristal ; Sander, Stanley ; Hopkins, Francesca ; Rafiq, Talha ; Miller, Charles E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3065-4bade7a7c61a61719303d800bcd3acac02d9e65bef4adf7006d17437263ac5933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Airborne instruments</topic><topic>Airborne observation</topic><topic>AVIRIS</topic><topic>Computer simulation</topic><topic>Decision analysis</topic><topic>Decision support systems</topic><topic>emissions</topic><topic>Emissions control</topic><topic>Fluxes</topic><topic>Geology</topic><topic>Geosciences, Multidisciplinary</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Instruments</topic><topic>inverse</topic><topic>Landfill</topic><topic>Landfill gas</topic><topic>Landfills</topic><topic>Megacities</topic><topic>Methane</topic><topic>Methane emissions</topic><topic>Mitigation</topic><topic>multitier</topic><topic>Physical Sciences</topic><topic>Pollution monitoring</topic><topic>Satellite instruments</topic><topic>Satellite observation</topic><topic>Satellite-borne instruments</topic><topic>Satellites</topic><topic>Science & Technology</topic><topic>Sensitivity</topic><topic>Tracer transport</topic><topic>Tracers</topic><topic>Trends</topic><topic>urban</topic><topic>Waste disposal sites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cusworth, Daniel H.</creatorcontrib><creatorcontrib>Duren, Riley M.</creatorcontrib><creatorcontrib>Yadav, Vineet</creatorcontrib><creatorcontrib>Thorpe, Andrew K.</creatorcontrib><creatorcontrib>Verhulst, Kristal</creatorcontrib><creatorcontrib>Sander, Stanley</creatorcontrib><creatorcontrib>Hopkins, Francesca</creatorcontrib><creatorcontrib>Rafiq, Talha</creatorcontrib><creatorcontrib>Miller, Charles E.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cusworth, Daniel H.</au><au>Duren, Riley M.</au><au>Yadav, Vineet</au><au>Thorpe, Andrew K.</au><au>Verhulst, Kristal</au><au>Sander, Stanley</au><au>Hopkins, Francesca</au><au>Rafiq, Talha</au><au>Miller, Charles E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of Methane Observations Across Scales: Strategies for Deploying a Multitiered Observing Network</atitle><jtitle>Geophysical research letters</jtitle><stitle>GEOPHYS RES LETT</stitle><date>2020-04-16</date><risdate>2020</risdate><volume>47</volume><issue>7</issue><epage>n/a</epage><artnum>2020</artnum><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Regional methane emissions monitoring is rapidly expanding with increased coverage of surface, airborne, and satellite instruments. We pilot a multitiered observing system in the Los Angeles Basin. We combine surface methane measurements from the Los Angeles Megacities Carbon Project, mountaintop retrievals from the CLARS‐FTS instrument, and space‐based XCH4 retrievals from the TROPOMI instrument into a single monitoring framework. We simulate these observations using a high‐resolution tracer transport model. Using inverse methods, we compare the sensitivity of each observing system component to various emissions sources. Combining multiple observing system into one framework allows for increased spatial and temporal sensitivity to methane emissions. We find a close correspondence between these inverse flux trends and independent airborne AVIRIS‐NG methane plume trends over a large landfill in the Los Angeles Basin. These results show that multitiered observing systems can reveal insights about sub‐basin scale methane emissions, which can be used to drive decision support.
Plain Language Summary
Methane is a powerful greenhouse gas. In order to effectively reduce its atmospheric concentrations, we need advanced methane observing strategies to pinpoint large emissions on small spatial scales. In this study, we combine surface, mountaintop, and satellite observations of methane over Los Angeles (called a multitiered observing system) and use these data to infer information about urban methane emissions. We assess how much information each component of the observing system provides to this analytics system. We validate our findings with independent airborne methane fluxes derived from the AVIRIS‐NG airborne instrument over a large landfill. Both systems detected large emission reductions that resulted from improved management practices. A multitiered observing and analytics system can potentially provide sub‐basin scale decision support for methane mitigation.
Key Points
A multitiered (surface, airborne, mountaintop, and satellite) methane tiered observing system is created for the Los Angeles Basin
Combining multiple observing system into a single framework allows for increased spatial and temporal sensitivity to methane emissions
Inverse fluxes from the multitiered system over a large landfill are validated with independent airborne observations</abstract><cop>WASHINGTON</cop><pub>Amer Geophysical Union</pub><doi>10.1029/2020GL087869</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4723-5280</orcidid><orcidid>https://orcid.org/0000-0003-1424-3620</orcidid><orcidid>https://orcid.org/0000-0002-9380-4838</orcidid><orcidid>https://orcid.org/0000-0002-2805-3345</orcidid><orcidid>https://orcid.org/0000-0001-5678-9678</orcidid><orcidid>https://orcid.org/0000-0001-7968-5433</orcidid><orcidid>https://orcid.org/0000-0003-1348-3219</orcidid><orcidid>https://orcid.org/0000-0003-0158-977X</orcidid><orcidid>https://orcid.org/0000-0002-6110-7675</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2020-04, Vol.47 (7), p.n/a, Article 2020 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_webofscience_primary_000560367600025 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Wiley Online Library (Open Access Collection) |
subjects | Airborne instruments Airborne observation AVIRIS Computer simulation Decision analysis Decision support systems emissions Emissions control Fluxes Geology Geosciences, Multidisciplinary Greenhouse effect Greenhouse gases Instruments inverse Landfill Landfill gas Landfills Megacities Methane Methane emissions Mitigation multitier Physical Sciences Pollution monitoring Satellite instruments Satellite observation Satellite-borne instruments Satellites Science & Technology Sensitivity Tracer transport Tracers Trends urban Waste disposal sites |
title | Synthesis of Methane Observations Across Scales: Strategies for Deploying a Multitiered Observing Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-08T15%3A18%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20Methane%20Observations%20Across%20Scales:%20Strategies%20for%20Deploying%20a%20Multitiered%20Observing%20Network&rft.jtitle=Geophysical%20research%20letters&rft.au=Cusworth,%20Daniel%20H.&rft.date=2020-04-16&rft.volume=47&rft.issue=7&rft.epage=n/a&rft.artnum=2020&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2020GL087869&rft_dat=%3Cproquest_webof%3E2390324603%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390324603&rft_id=info:pmid/&rfr_iscdi=true |