Enhancement of 2-butanone sensing properties of SiO2@CoO core-shell structures
Volatile organic compounds (VOCs) can be associated with some diseases when found in human exhaled breath as a result of alterations in metabolic pathways. Therefore, the development of highly selective sensors to a particular VOC is required. In this paper, we used silica (SiO2) nanospheres as supp...
Gespeichert in:
Veröffentlicht in: | Ceramics international 2020-10, Vol.46 (14), p.22692-22698 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Volatile organic compounds (VOCs) can be associated with some diseases when found in human exhaled breath as a result of alterations in metabolic pathways. Therefore, the development of highly selective sensors to a particular VOC is required. In this paper, we used silica (SiO2) nanospheres as support for the growth of cobalt (II) oxide (CoO) nanosheets, resulting in the SiO2@CoO core-shell structure with a high specific surface area. This structure was applied as a chemoresistive VOCs sensor. The SiO2@CoO material exhibited increased sensitivity to 2-butanone in comparison with acetone, methanol, ethanol, isopropanol, acetaldehyde, benzene, toluene, and m-xylene. The response to 100 ppm of 2-butanone was ~44.7, with a response time of 27 s. The enhanced performance might be attributed to the high surface area provided by the unique core-shell structure with 2D CoO nanosheets.
[Display omitted] |
---|---|
ISSN: | 0272-8842 1873-3956 |
DOI: | 10.1016/j.ceramint.2020.06.032 |