Multimodal network dynamics underpinning working memory
Complex human cognition arises from the integrated processing of multiple brain systems. However, little is known about how brain systems and their interactions might relate to, or perhaps even explain, human cognitive capacities. Here, we address this gap in knowledge by proposing a mechanistic fra...
Gespeichert in:
Veröffentlicht in: | Nature communications 2020-06, Vol.11 (1), p.3035-3035, Article 3035 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3035 |
---|---|
container_issue | 1 |
container_start_page | 3035 |
container_title | Nature communications |
container_volume | 11 |
creator | Murphy, Andrew C. Bertolero, Maxwell A. Papadopoulos, Lia Lydon-Staley, David M. Bassett, Danielle S. |
description | Complex human cognition arises from the integrated processing of multiple brain systems. However, little is known about how brain systems and their interactions might relate to, or perhaps even explain, human cognitive capacities. Here, we address this gap in knowledge by proposing a mechanistic framework linking frontoparietal system activity, default mode system activity, and the interactions between them, with individual differences in working memory capacity. We show that working memory performance depends on the strength of functional interactions between the frontoparietal and default mode systems. We find that this strength is modulated by the activation of two newly described brain regions, and demonstrate that the functional role of these systems is underpinned by structural white matter. Broadly, our study presents a holistic account of how regional activity, functional connections, and structural linkages together support integrative processing across brain systems in order for the brain to execute a complex cognitive process.
Working memory is a critical component of executive function that allows people to complete complex tasks in the moment. Here, the authors show that this ability is underpinned by two newly defined brain networks. |
doi_str_mv | 10.1038/s41467-020-15541-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000558686400002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_541467b8db924f5eb0cc1a47fe85047a</doaj_id><sourcerecordid>2414007835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-d4a07b6ecc9f286948a23e1a8a0e624c17a70a96a81295d04efc892459688ea73</originalsourceid><addsrcrecordid>eNqNkktv1DAUhSMEolXpH2CBRmKDVAX8jJ0NEhrxqFTUTVlbN87N4CGxBzuhmn9fZ1KGlgXCm2vZ3zm618dF8ZKSt5Rw_S4JKipVEkZKKqWgJXlSnDKSN1Qx_vTB_qQ4T2lL8uI11UI8L044ywqlxGmhvk796IbQQr_yON6G-GPV7j0MzqbV5FuMO-e985vVfDXXAYcQ9y-KZx30Cc_v61nx7dPHm_WX8ur68-X6w1VppSBj2QogqqnQ2rpjuqqFBsaRggaCFROWKlAE6go0ZbVsicDO6poJWVdaIyh-Vlwuvm2ArdlFN0DcmwDOHA5C3BiIo7M9Gnl4kUa3TTboJDbEWgpCdaglEQqy1_vFazc1A7YW_Rihf2T6-Ma772YTfhmVe6trnQ3e3BvE8HPCNJrBJYt9Dx7DlAzLHRCiNJcZff0Xug1T9PmpZoozzoicp2MLZWNIKWJ3bIYSM8dslphNjtkcYjYki149HOMo-R1qBvQC3GITumQdeotHLP8DKXWlKzF_CbZ2I4wu-HWY_JilF_8vzTRf6JQJv8H4Z8h_9H8HU4rSwQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413232057</pqid></control><display><type>article</type><title>Multimodal network dynamics underpinning working memory</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Murphy, Andrew C. ; Bertolero, Maxwell A. ; Papadopoulos, Lia ; Lydon-Staley, David M. ; Bassett, Danielle S.</creator><creatorcontrib>Murphy, Andrew C. ; Bertolero, Maxwell A. ; Papadopoulos, Lia ; Lydon-Staley, David M. ; Bassett, Danielle S.</creatorcontrib><description>Complex human cognition arises from the integrated processing of multiple brain systems. However, little is known about how brain systems and their interactions might relate to, or perhaps even explain, human cognitive capacities. Here, we address this gap in knowledge by proposing a mechanistic framework linking frontoparietal system activity, default mode system activity, and the interactions between them, with individual differences in working memory capacity. We show that working memory performance depends on the strength of functional interactions between the frontoparietal and default mode systems. We find that this strength is modulated by the activation of two newly described brain regions, and demonstrate that the functional role of these systems is underpinned by structural white matter. Broadly, our study presents a holistic account of how regional activity, functional connections, and structural linkages together support integrative processing across brain systems in order for the brain to execute a complex cognitive process.
Working memory is a critical component of executive function that allows people to complete complex tasks in the moment. Here, the authors show that this ability is underpinned by two newly defined brain networks.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-15541-0</identifier><identifier>PMID: 32541774</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/39 ; 59/36 ; 59/57 ; 631/378/116 ; 631/378/1595/1636 ; 631/378/2649 ; Adult ; Brain ; Brain - physiology ; Brain Mapping ; Cognition ; Cognitive ability ; Critical components ; Executive function ; Female ; Humanities and Social Sciences ; Humans ; Individuality ; Memory ; Memory, Short-Term ; multidisciplinary ; Multidisciplinary Sciences ; Science ; Science & Technology ; Science & Technology - Other Topics ; Science (multidisciplinary) ; Short term memory ; Structure-function relationships ; Substantia alba ; Task complexity ; Young Adult</subject><ispartof>Nature communications, 2020-06, Vol.11 (1), p.3035-3035, Article 3035</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>89</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000558686400002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c540t-d4a07b6ecc9f286948a23e1a8a0e624c17a70a96a81295d04efc892459688ea73</citedby><cites>FETCH-LOGICAL-c540t-d4a07b6ecc9f286948a23e1a8a0e624c17a70a96a81295d04efc892459688ea73</cites><orcidid>0000-0001-8702-3923 ; 0000-0002-6183-4493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7295998/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7295998/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2108,27905,27906,41101,42170,51557,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32541774$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Murphy, Andrew C.</creatorcontrib><creatorcontrib>Bertolero, Maxwell A.</creatorcontrib><creatorcontrib>Papadopoulos, Lia</creatorcontrib><creatorcontrib>Lydon-Staley, David M.</creatorcontrib><creatorcontrib>Bassett, Danielle S.</creatorcontrib><title>Multimodal network dynamics underpinning working memory</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>NAT COMMUN</addtitle><addtitle>Nat Commun</addtitle><description>Complex human cognition arises from the integrated processing of multiple brain systems. However, little is known about how brain systems and their interactions might relate to, or perhaps even explain, human cognitive capacities. Here, we address this gap in knowledge by proposing a mechanistic framework linking frontoparietal system activity, default mode system activity, and the interactions between them, with individual differences in working memory capacity. We show that working memory performance depends on the strength of functional interactions between the frontoparietal and default mode systems. We find that this strength is modulated by the activation of two newly described brain regions, and demonstrate that the functional role of these systems is underpinned by structural white matter. Broadly, our study presents a holistic account of how regional activity, functional connections, and structural linkages together support integrative processing across brain systems in order for the brain to execute a complex cognitive process.
Working memory is a critical component of executive function that allows people to complete complex tasks in the moment. Here, the authors show that this ability is underpinned by two newly defined brain networks.</description><subject>38/39</subject><subject>59/36</subject><subject>59/57</subject><subject>631/378/116</subject><subject>631/378/1595/1636</subject><subject>631/378/2649</subject><subject>Adult</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Brain Mapping</subject><subject>Cognition</subject><subject>Cognitive ability</subject><subject>Critical components</subject><subject>Executive function</subject><subject>Female</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Individuality</subject><subject>Memory</subject><subject>Memory, Short-Term</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>Science</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Short term memory</subject><subject>Structure-function relationships</subject><subject>Substantia alba</subject><subject>Task complexity</subject><subject>Young Adult</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkktv1DAUhSMEolXpH2CBRmKDVAX8jJ0NEhrxqFTUTVlbN87N4CGxBzuhmn9fZ1KGlgXCm2vZ3zm618dF8ZKSt5Rw_S4JKipVEkZKKqWgJXlSnDKSN1Qx_vTB_qQ4T2lL8uI11UI8L044ywqlxGmhvk796IbQQr_yON6G-GPV7j0MzqbV5FuMO-e985vVfDXXAYcQ9y-KZx30Cc_v61nx7dPHm_WX8ur68-X6w1VppSBj2QogqqnQ2rpjuqqFBsaRggaCFROWKlAE6go0ZbVsicDO6poJWVdaIyh-Vlwuvm2ArdlFN0DcmwDOHA5C3BiIo7M9Gnl4kUa3TTboJDbEWgpCdaglEQqy1_vFazc1A7YW_Rihf2T6-Ma772YTfhmVe6trnQ3e3BvE8HPCNJrBJYt9Dx7DlAzLHRCiNJcZff0Xug1T9PmpZoozzoicp2MLZWNIKWJ3bIYSM8dslphNjtkcYjYki149HOMo-R1qBvQC3GITumQdeotHLP8DKXWlKzF_CbZ2I4wu-HWY_JilF_8vzTRf6JQJv8H4Z8h_9H8HU4rSwQ</recordid><startdate>20200615</startdate><enddate>20200615</enddate><creator>Murphy, Andrew C.</creator><creator>Bertolero, Maxwell A.</creator><creator>Papadopoulos, Lia</creator><creator>Lydon-Staley, David M.</creator><creator>Bassett, Danielle S.</creator><general>Nature Publishing Group UK</general><general>Springer Nature</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8702-3923</orcidid><orcidid>https://orcid.org/0000-0002-6183-4493</orcidid></search><sort><creationdate>20200615</creationdate><title>Multimodal network dynamics underpinning working memory</title><author>Murphy, Andrew C. ; Bertolero, Maxwell A. ; Papadopoulos, Lia ; Lydon-Staley, David M. ; Bassett, Danielle S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-d4a07b6ecc9f286948a23e1a8a0e624c17a70a96a81295d04efc892459688ea73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>38/39</topic><topic>59/36</topic><topic>59/57</topic><topic>631/378/116</topic><topic>631/378/1595/1636</topic><topic>631/378/2649</topic><topic>Adult</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Brain Mapping</topic><topic>Cognition</topic><topic>Cognitive ability</topic><topic>Critical components</topic><topic>Executive function</topic><topic>Female</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Individuality</topic><topic>Memory</topic><topic>Memory, Short-Term</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>Science</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Short term memory</topic><topic>Structure-function relationships</topic><topic>Substantia alba</topic><topic>Task complexity</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murphy, Andrew C.</creatorcontrib><creatorcontrib>Bertolero, Maxwell A.</creatorcontrib><creatorcontrib>Papadopoulos, Lia</creatorcontrib><creatorcontrib>Lydon-Staley, David M.</creatorcontrib><creatorcontrib>Bassett, Danielle S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murphy, Andrew C.</au><au>Bertolero, Maxwell A.</au><au>Papadopoulos, Lia</au><au>Lydon-Staley, David M.</au><au>Bassett, Danielle S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal network dynamics underpinning working memory</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><stitle>NAT COMMUN</stitle><addtitle>Nat Commun</addtitle><date>2020-06-15</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>3035</spage><epage>3035</epage><pages>3035-3035</pages><artnum>3035</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Complex human cognition arises from the integrated processing of multiple brain systems. However, little is known about how brain systems and their interactions might relate to, or perhaps even explain, human cognitive capacities. Here, we address this gap in knowledge by proposing a mechanistic framework linking frontoparietal system activity, default mode system activity, and the interactions between them, with individual differences in working memory capacity. We show that working memory performance depends on the strength of functional interactions between the frontoparietal and default mode systems. We find that this strength is modulated by the activation of two newly described brain regions, and demonstrate that the functional role of these systems is underpinned by structural white matter. Broadly, our study presents a holistic account of how regional activity, functional connections, and structural linkages together support integrative processing across brain systems in order for the brain to execute a complex cognitive process.
Working memory is a critical component of executive function that allows people to complete complex tasks in the moment. Here, the authors show that this ability is underpinned by two newly defined brain networks.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32541774</pmid><doi>10.1038/s41467-020-15541-0</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8702-3923</orcidid><orcidid>https://orcid.org/0000-0002-6183-4493</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2020-06, Vol.11 (1), p.3035-3035, Article 3035 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_webofscience_primary_000558686400002 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Alma/SFX Local Collection |
subjects | 38/39 59/36 59/57 631/378/116 631/378/1595/1636 631/378/2649 Adult Brain Brain - physiology Brain Mapping Cognition Cognitive ability Critical components Executive function Female Humanities and Social Sciences Humans Individuality Memory Memory, Short-Term multidisciplinary Multidisciplinary Sciences Science Science & Technology Science & Technology - Other Topics Science (multidisciplinary) Short term memory Structure-function relationships Substantia alba Task complexity Young Adult |
title | Multimodal network dynamics underpinning working memory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A29%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20network%20dynamics%20underpinning%20working%20memory&rft.jtitle=Nature%20communications&rft.au=Murphy,%20Andrew%20C.&rft.date=2020-06-15&rft.volume=11&rft.issue=1&rft.spage=3035&rft.epage=3035&rft.pages=3035-3035&rft.artnum=3035&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-15541-0&rft_dat=%3Cproquest_webof%3E2414007835%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2413232057&rft_id=info:pmid/32541774&rft_doaj_id=oai_doaj_org_article_541467b8db924f5eb0cc1a47fe85047a&rfr_iscdi=true |