Inverse Solidification Induced by Active Janus Particles

Crystals melt when thermal excitations or the concentration of defects in the lattice is sufficiently high. Upon melting, the crystalline long‐range order vanishes, turning the solid to a fluid. In contrast to this classical scenario of solid melting, here a counter‐intuitive behavior of the occurre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-09, Vol.30 (39), p.n/a, Article 2003851
Hauptverfasser: Huang, Tao, Misko, Vyacheslav R., Gobeil, Sophie, Wang, Xu, Nori, Franco, Schütt, Julian, Fassbender, Jürgen, Cuniberti, Gianaurelio, Makarov, Denys, Baraban, Larysa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Crystals melt when thermal excitations or the concentration of defects in the lattice is sufficiently high. Upon melting, the crystalline long‐range order vanishes, turning the solid to a fluid. In contrast to this classical scenario of solid melting, here a counter‐intuitive behavior of the occurrence of crystalline long‐range order in an initially disordered matrix is demonstrated. This unusual solidification is demonstrated in a system of passive colloidal particles accommodating chemically active defects—photocatalytic Janus particles. The observed crystallization occurs when the amount of active‐defect‐induced fluctuations (which is the measure of the effective temperature) reaches critical value. The driving mechanism behind this unusual behavior is purely internal and resembles a blast‐induced solidification. Here, the role of “internal micro‐blasts” is played by the photochemical activity of defects residing in the colloidal matrix. The defect‐induced solidification occurs under non‐equilibrium conditions: the resulting solid exists as long as a constant supply of energy in the form of ion flow is provided by the catalytic photochemical reaction at the surface of active Janus particle defects. The findings could be useful for the understanding of the phase transitions of matter under extreme conditions far from thermodynamic equilibrium. Inverse solidification driven by active colloids provides novel insight into the collective effects in mixed colloidal systems. It offers versatile possibilities to address the processes of solidification in various systems out of equilibrium, including the formation of bio‐molecular condensates or biomineralization, transitions from amorphous to polycrystalline state in condensed matter, or synthesis of materials under extreme conditions.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.202003851