A Soft Computing Approach for Selecting and Combining Spectral Bands

We introduce a soft computing approach for automatically selecting and combining indices from remote sensing multispectral images that can be used for classification tasks. The proposed approach is based on a Genetic-Programming (GP) framework, a technique successfully used in a wide variety of opti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2020-07, Vol.12 (14), p.2267, Article 2267
Hauptverfasser: Albarracin, Juan F. H., Oliveira, Rafael S., Hirota, Marina, dos Santos, Jefersson A., Torres, Ricardo da S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page 2267
container_title Remote sensing (Basel, Switzerland)
container_volume 12
creator Albarracin, Juan F. H.
Oliveira, Rafael S.
Hirota, Marina
dos Santos, Jefersson A.
Torres, Ricardo da S.
description We introduce a soft computing approach for automatically selecting and combining indices from remote sensing multispectral images that can be used for classification tasks. The proposed approach is based on a Genetic-Programming (GP) framework, a technique successfully used in a wide variety of optimization problems. Through GP, it is possible to learn indices that maximize the separability of samples from two different classes. Once the indices specialized for all the pairs of classes are obtained, they are used in pixelwise classification tasks. We used the GP-based solution to evaluate complex classification problems, such as those that are related to the discrimination of vegetation types within and between tropical biomes. Using time series defined in terms of the learned spectral indices, we show that the GP framework leads to superior results than other indices that are used to discriminate and classify tropical biomes.
doi_str_mv 10.3390/rs12142267
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000557825400001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_91315ecc3c4b42399f2bf6c2d3215068</doaj_id><sourcerecordid>2424849920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-c97fa0b693a3e48a054c922adfd8010dd4f2ea927aa2ff6ed390d430b242b5153</originalsourceid><addsrcrecordid>eNqNUMtOwzAQjBBIVNALXxCJGyhgr52HjyW8KlXiUDhbjh8lVRoHOxHi73EaVDiyF--OZma9E0UXGN0QwtCt8xgwBcjyo2gGKIeEAoPjP_1pNPd-i0IRghmis-h-Ea-t6ePS7rqhr9tNvOg6Z4V8j4118Vo3Wu5h0aqRVNXtOK27ADvRxHcB9-fRiRGN1_Of9yx6e3x4LZ-T1cvTslysEkky3CeS5UagKmNEEE0LgVIqGYBQRhUII6WoAS0Y5EKAMZlW4ShFCaqAQpXilJxFy8lXWbHlnat3wn1xK2q-B6zbcOH6WjaaM0xwqqUkklYUCGMGKpNJUARwirIieF1OXuHaj0H7nm_t4NrwfR7W0YIyBiiwriaWdNZ7p81hK0Z8DJ3_hh7IxUT-1JU1Xta6lfogCKGnaV5ASsf8cVn3oq9tW9qh7YP0-v9S8g1qLpJU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424849920</pqid></control><display><type>article</type><title>A Soft Computing Approach for Selecting and Combining Spectral Bands</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Albarracin, Juan F. H. ; Oliveira, Rafael S. ; Hirota, Marina ; dos Santos, Jefersson A. ; Torres, Ricardo da S.</creator><creatorcontrib>Albarracin, Juan F. H. ; Oliveira, Rafael S. ; Hirota, Marina ; dos Santos, Jefersson A. ; Torres, Ricardo da S.</creatorcontrib><description>We introduce a soft computing approach for automatically selecting and combining indices from remote sensing multispectral images that can be used for classification tasks. The proposed approach is based on a Genetic-Programming (GP) framework, a technique successfully used in a wide variety of optimization problems. Through GP, it is possible to learn indices that maximize the separability of samples from two different classes. Once the indices specialized for all the pairs of classes are obtained, they are used in pixelwise classification tasks. We used the GP-based solution to evaluate complex classification problems, such as those that are related to the discrimination of vegetation types within and between tropical biomes. Using time series defined in terms of the learned spectral indices, we show that the GP framework leads to superior results than other indices that are used to discriminate and classify tropical biomes.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs12142267</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Algorithms ; Classification ; Ecosystems ; Environmental Sciences ; Environmental Sciences &amp; Ecology ; genetic programming ; Geology ; Geosciences, Multidisciplinary ; Grasslands ; Image classification ; Imaging Science &amp; Photographic Technology ; Life Sciences &amp; Biomedicine ; Optimization ; Physical Sciences ; Remote Sensing ; Science &amp; Technology ; Sensors ; Soft computing ; Spectral bands ; spectral indices ; Task complexity ; Technology ; Vegetation ; vegetation indices</subject><ispartof>Remote sensing (Basel, Switzerland), 2020-07, Vol.12 (14), p.2267, Article 2267</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000557825400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c361t-c97fa0b693a3e48a054c922adfd8010dd4f2ea927aa2ff6ed390d430b242b5153</citedby><cites>FETCH-LOGICAL-c361t-c97fa0b693a3e48a054c922adfd8010dd4f2ea927aa2ff6ed390d430b242b5153</cites><orcidid>0000-0002-3997-4422 ; 0000-0001-9772-263X ; 0000-0002-6392-2526 ; 0000-0002-1958-3651 ; 0000-0002-8889-1586</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,27929,27930,28253</link.rule.ids></links><search><creatorcontrib>Albarracin, Juan F. H.</creatorcontrib><creatorcontrib>Oliveira, Rafael S.</creatorcontrib><creatorcontrib>Hirota, Marina</creatorcontrib><creatorcontrib>dos Santos, Jefersson A.</creatorcontrib><creatorcontrib>Torres, Ricardo da S.</creatorcontrib><title>A Soft Computing Approach for Selecting and Combining Spectral Bands</title><title>Remote sensing (Basel, Switzerland)</title><addtitle>REMOTE SENS-BASEL</addtitle><description>We introduce a soft computing approach for automatically selecting and combining indices from remote sensing multispectral images that can be used for classification tasks. The proposed approach is based on a Genetic-Programming (GP) framework, a technique successfully used in a wide variety of optimization problems. Through GP, it is possible to learn indices that maximize the separability of samples from two different classes. Once the indices specialized for all the pairs of classes are obtained, they are used in pixelwise classification tasks. We used the GP-based solution to evaluate complex classification problems, such as those that are related to the discrimination of vegetation types within and between tropical biomes. Using time series defined in terms of the learned spectral indices, we show that the GP framework leads to superior results than other indices that are used to discriminate and classify tropical biomes.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Ecosystems</subject><subject>Environmental Sciences</subject><subject>Environmental Sciences &amp; Ecology</subject><subject>genetic programming</subject><subject>Geology</subject><subject>Geosciences, Multidisciplinary</subject><subject>Grasslands</subject><subject>Image classification</subject><subject>Imaging Science &amp; Photographic Technology</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Optimization</subject><subject>Physical Sciences</subject><subject>Remote Sensing</subject><subject>Science &amp; Technology</subject><subject>Sensors</subject><subject>Soft computing</subject><subject>Spectral bands</subject><subject>spectral indices</subject><subject>Task complexity</subject><subject>Technology</subject><subject>Vegetation</subject><subject>vegetation indices</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNUMtOwzAQjBBIVNALXxCJGyhgr52HjyW8KlXiUDhbjh8lVRoHOxHi73EaVDiyF--OZma9E0UXGN0QwtCt8xgwBcjyo2gGKIeEAoPjP_1pNPd-i0IRghmis-h-Ea-t6ePS7rqhr9tNvOg6Z4V8j4118Vo3Wu5h0aqRVNXtOK27ADvRxHcB9-fRiRGN1_Of9yx6e3x4LZ-T1cvTslysEkky3CeS5UagKmNEEE0LgVIqGYBQRhUII6WoAS0Y5EKAMZlW4ShFCaqAQpXilJxFy8lXWbHlnat3wn1xK2q-B6zbcOH6WjaaM0xwqqUkklYUCGMGKpNJUARwirIieF1OXuHaj0H7nm_t4NrwfR7W0YIyBiiwriaWdNZ7p81hK0Z8DJ3_hh7IxUT-1JU1Xta6lfogCKGnaV5ASsf8cVn3oq9tW9qh7YP0-v9S8g1qLpJU</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Albarracin, Juan F. H.</creator><creator>Oliveira, Rafael S.</creator><creator>Hirota, Marina</creator><creator>dos Santos, Jefersson A.</creator><creator>Torres, Ricardo da S.</creator><general>Mdpi</general><general>MDPI AG</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3997-4422</orcidid><orcidid>https://orcid.org/0000-0001-9772-263X</orcidid><orcidid>https://orcid.org/0000-0002-6392-2526</orcidid><orcidid>https://orcid.org/0000-0002-1958-3651</orcidid><orcidid>https://orcid.org/0000-0002-8889-1586</orcidid></search><sort><creationdate>20200701</creationdate><title>A Soft Computing Approach for Selecting and Combining Spectral Bands</title><author>Albarracin, Juan F. H. ; Oliveira, Rafael S. ; Hirota, Marina ; dos Santos, Jefersson A. ; Torres, Ricardo da S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-c97fa0b693a3e48a054c922adfd8010dd4f2ea927aa2ff6ed390d430b242b5153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Ecosystems</topic><topic>Environmental Sciences</topic><topic>Environmental Sciences &amp; Ecology</topic><topic>genetic programming</topic><topic>Geology</topic><topic>Geosciences, Multidisciplinary</topic><topic>Grasslands</topic><topic>Image classification</topic><topic>Imaging Science &amp; Photographic Technology</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Optimization</topic><topic>Physical Sciences</topic><topic>Remote Sensing</topic><topic>Science &amp; Technology</topic><topic>Sensors</topic><topic>Soft computing</topic><topic>Spectral bands</topic><topic>spectral indices</topic><topic>Task complexity</topic><topic>Technology</topic><topic>Vegetation</topic><topic>vegetation indices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albarracin, Juan F. H.</creatorcontrib><creatorcontrib>Oliveira, Rafael S.</creatorcontrib><creatorcontrib>Hirota, Marina</creatorcontrib><creatorcontrib>dos Santos, Jefersson A.</creatorcontrib><creatorcontrib>Torres, Ricardo da S.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albarracin, Juan F. H.</au><au>Oliveira, Rafael S.</au><au>Hirota, Marina</au><au>dos Santos, Jefersson A.</au><au>Torres, Ricardo da S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Soft Computing Approach for Selecting and Combining Spectral Bands</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><stitle>REMOTE SENS-BASEL</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>12</volume><issue>14</issue><spage>2267</spage><pages>2267-</pages><artnum>2267</artnum><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>We introduce a soft computing approach for automatically selecting and combining indices from remote sensing multispectral images that can be used for classification tasks. The proposed approach is based on a Genetic-Programming (GP) framework, a technique successfully used in a wide variety of optimization problems. Through GP, it is possible to learn indices that maximize the separability of samples from two different classes. Once the indices specialized for all the pairs of classes are obtained, they are used in pixelwise classification tasks. We used the GP-based solution to evaluate complex classification problems, such as those that are related to the discrimination of vegetation types within and between tropical biomes. Using time series defined in terms of the learned spectral indices, we show that the GP framework leads to superior results than other indices that are used to discriminate and classify tropical biomes.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/rs12142267</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-3997-4422</orcidid><orcidid>https://orcid.org/0000-0001-9772-263X</orcidid><orcidid>https://orcid.org/0000-0002-6392-2526</orcidid><orcidid>https://orcid.org/0000-0002-1958-3651</orcidid><orcidid>https://orcid.org/0000-0002-8889-1586</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2020-07, Vol.12 (14), p.2267, Article 2267
issn 2072-4292
2072-4292
language eng
recordid cdi_webofscience_primary_000557825400001CitationCount
source DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Classification
Ecosystems
Environmental Sciences
Environmental Sciences & Ecology
genetic programming
Geology
Geosciences, Multidisciplinary
Grasslands
Image classification
Imaging Science & Photographic Technology
Life Sciences & Biomedicine
Optimization
Physical Sciences
Remote Sensing
Science & Technology
Sensors
Soft computing
Spectral bands
spectral indices
Task complexity
Technology
Vegetation
vegetation indices
title A Soft Computing Approach for Selecting and Combining Spectral Bands
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A56%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Soft%20Computing%20Approach%20for%20Selecting%20and%20Combining%20Spectral%20Bands&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Albarracin,%20Juan%20F.%20H.&rft.date=2020-07-01&rft.volume=12&rft.issue=14&rft.spage=2267&rft.pages=2267-&rft.artnum=2267&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs12142267&rft_dat=%3Cproquest_webof%3E2424849920%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424849920&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_91315ecc3c4b42399f2bf6c2d3215068&rfr_iscdi=true