Electronic band structure of three-dimensional topological insulators with different stoichiometry composition
We report on a comparative theoretical and experimental investigation of the electronic band structure of a family of three-dimensional topological insulators, A(IV)Bi(4)Te(7-x)Se(x) (A(IV) = Sn, Pb; x = 0, 1). We prove by means of density functional theory calculations and angle-resolved photoemiss...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2020-08, Vol.102 (8), p.1, Article 085118 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | Physical review. B |
container_volume | 102 |
creator | Grimaldi Pacile, D. Eremeev, S. De Luca, O. Policicchio, A. Moras, P. Sheverdyaeva, P. M. Kundu, A. K. Aliev, Z. S. Rudolf, P. Agostino, R. G. Chukov, E. Papagno, M. |
description | We report on a comparative theoretical and experimental investigation of the electronic band structure of a family of three-dimensional topological insulators, A(IV)Bi(4)Te(7-x)Se(x) (A(IV) = Sn, Pb; x = 0, 1). We prove by means of density functional theory calculations and angle-resolved photoemission spectroscopy measurements that partial or total substitution of heavy atoms by lighter isoelectronic ones affects the electronic properties of topological insulators. In particular, we show that the modification of the Dirac cone position relative to the Fermi level and the bulk band gap size can be controlled by varying the stoichiometry of the compound. We also demonstrate that the investigated systems are inert to oxygen exposure. |
doi_str_mv | 10.1103/PhysRevB.102.085118 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000557728500003CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440094994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-bf55408b4cb82c14ea5bd59f6a41596f9fa2524d44fb5ca7f67af46e498c91c53</originalsourceid><addsrcrecordid>eNqNkF9LwzAUxYsoOHSfwJeCj9KZpEnbPGqZf2CgiD6XNL2xGV1Sk9Sxb2_GdM8-3cPl_A6ckyRXGC0wRvnta7_zb_B9v8CILFDFMK5OkhmhBc84L_jpUTN0nsy9XyOEcIF4ifgsMcsBZHDWaJm2wnSpD26SYXKQWpWG3gFknd6A8doaMaTBjnawn1pGrY2fBhGs8-lWhz7ttFLgwIQYYrXstd1AcLtU2s1ovQ4x4TI5U2LwMP-9F8nHw_K9fspWL4_P9d0qkzkhIWsVYxRVLZVtRSSmIFjbMa4KQTHjheJKEEZoR6lqmRSlKkqhaAGUV5JjyfKL5PqQOzr7NYEPzdpOLhbwDaEUIU45p9GVH1zSWe8dqGZ0eiPcrsGo2W_b_G0bH6Q5bBup6kBtobXKSw1GwpGM4zJWlqRiUaG81kHsi9d2MiGiN_9H8x94s5LV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440094994</pqid></control><display><type>article</type><title>Electronic band structure of three-dimensional topological insulators with different stoichiometry composition</title><source>APS_美国物理学会期刊</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Grimaldi ; Pacile, D. ; Eremeev, S. ; De Luca, O. ; Policicchio, A. ; Moras, P. ; Sheverdyaeva, P. M. ; Kundu, A. K. ; Aliev, Z. S. ; Rudolf, P. ; Agostino, R. G. ; Chukov, E. ; Papagno, M.</creator><creatorcontrib>Grimaldi ; Pacile, D. ; Eremeev, S. ; De Luca, O. ; Policicchio, A. ; Moras, P. ; Sheverdyaeva, P. M. ; Kundu, A. K. ; Aliev, Z. S. ; Rudolf, P. ; Agostino, R. G. ; Chukov, E. ; Papagno, M.</creatorcontrib><description>We report on a comparative theoretical and experimental investigation of the electronic band structure of a family of three-dimensional topological insulators, A(IV)Bi(4)Te(7-x)Se(x) (A(IV) = Sn, Pb; x = 0, 1). We prove by means of density functional theory calculations and angle-resolved photoemission spectroscopy measurements that partial or total substitution of heavy atoms by lighter isoelectronic ones affects the electronic properties of topological insulators. In particular, we show that the modification of the Dirac cone position relative to the Fermi level and the bulk band gap size can be controlled by varying the stoichiometry of the compound. We also demonstrate that the investigated systems are inert to oxygen exposure.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.102.085118</identifier><language>eng</language><publisher>COLLEGE PK: Amer Physical Soc</publisher><subject>Band structure of solids ; Density functional theory ; Lead ; Materials Science ; Materials Science, Multidisciplinary ; Photoelectric emission ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Science & Technology ; Stoichiometry ; Technology ; Tin ; Topological insulators ; Topology</subject><ispartof>Physical review. B, 2020-08, Vol.102 (8), p.1, Article 085118</ispartof><rights>Copyright American Physical Society Aug 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000557728500003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c322t-bf55408b4cb82c14ea5bd59f6a41596f9fa2524d44fb5ca7f67af46e498c91c53</citedby><cites>FETCH-LOGICAL-c322t-bf55408b4cb82c14ea5bd59f6a41596f9fa2524d44fb5ca7f67af46e498c91c53</cites><orcidid>0000-0002-5172-1866 ; 0000-0002-7771-8737 ; 0000-0002-4428-0863 ; 0000-0001-6219-3889 ; 0000-0002-4231-1638 ; 0000-0002-4418-1769 ; 0000-0002-7326-6278 ; 0000-0002-9477-3017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2877,2878,27929,27930,28253</link.rule.ids></links><search><creatorcontrib>Grimaldi</creatorcontrib><creatorcontrib>Pacile, D.</creatorcontrib><creatorcontrib>Eremeev, S.</creatorcontrib><creatorcontrib>De Luca, O.</creatorcontrib><creatorcontrib>Policicchio, A.</creatorcontrib><creatorcontrib>Moras, P.</creatorcontrib><creatorcontrib>Sheverdyaeva, P. M.</creatorcontrib><creatorcontrib>Kundu, A. K.</creatorcontrib><creatorcontrib>Aliev, Z. S.</creatorcontrib><creatorcontrib>Rudolf, P.</creatorcontrib><creatorcontrib>Agostino, R. G.</creatorcontrib><creatorcontrib>Chukov, E.</creatorcontrib><creatorcontrib>Papagno, M.</creatorcontrib><title>Electronic band structure of three-dimensional topological insulators with different stoichiometry composition</title><title>Physical review. B</title><addtitle>PHYS REV B</addtitle><description>We report on a comparative theoretical and experimental investigation of the electronic band structure of a family of three-dimensional topological insulators, A(IV)Bi(4)Te(7-x)Se(x) (A(IV) = Sn, Pb; x = 0, 1). We prove by means of density functional theory calculations and angle-resolved photoemission spectroscopy measurements that partial or total substitution of heavy atoms by lighter isoelectronic ones affects the electronic properties of topological insulators. In particular, we show that the modification of the Dirac cone position relative to the Fermi level and the bulk band gap size can be controlled by varying the stoichiometry of the compound. We also demonstrate that the investigated systems are inert to oxygen exposure.</description><subject>Band structure of solids</subject><subject>Density functional theory</subject><subject>Lead</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Photoelectric emission</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Science & Technology</subject><subject>Stoichiometry</subject><subject>Technology</subject><subject>Tin</subject><subject>Topological insulators</subject><subject>Topology</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkF9LwzAUxYsoOHSfwJeCj9KZpEnbPGqZf2CgiD6XNL2xGV1Sk9Sxb2_GdM8-3cPl_A6ckyRXGC0wRvnta7_zb_B9v8CILFDFMK5OkhmhBc84L_jpUTN0nsy9XyOEcIF4ifgsMcsBZHDWaJm2wnSpD26SYXKQWpWG3gFknd6A8doaMaTBjnawn1pGrY2fBhGs8-lWhz7ttFLgwIQYYrXstd1AcLtU2s1ovQ4x4TI5U2LwMP-9F8nHw_K9fspWL4_P9d0qkzkhIWsVYxRVLZVtRSSmIFjbMa4KQTHjheJKEEZoR6lqmRSlKkqhaAGUV5JjyfKL5PqQOzr7NYEPzdpOLhbwDaEUIU45p9GVH1zSWe8dqGZ0eiPcrsGo2W_b_G0bH6Q5bBup6kBtobXKSw1GwpGM4zJWlqRiUaG81kHsi9d2MiGiN_9H8x94s5LV</recordid><startdate>20200815</startdate><enddate>20200815</enddate><creator>Grimaldi</creator><creator>Pacile, D.</creator><creator>Eremeev, S.</creator><creator>De Luca, O.</creator><creator>Policicchio, A.</creator><creator>Moras, P.</creator><creator>Sheverdyaeva, P. M.</creator><creator>Kundu, A. K.</creator><creator>Aliev, Z. S.</creator><creator>Rudolf, P.</creator><creator>Agostino, R. G.</creator><creator>Chukov, E.</creator><creator>Papagno, M.</creator><general>Amer Physical Soc</general><general>American Physical Society</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5172-1866</orcidid><orcidid>https://orcid.org/0000-0002-7771-8737</orcidid><orcidid>https://orcid.org/0000-0002-4428-0863</orcidid><orcidid>https://orcid.org/0000-0001-6219-3889</orcidid><orcidid>https://orcid.org/0000-0002-4231-1638</orcidid><orcidid>https://orcid.org/0000-0002-4418-1769</orcidid><orcidid>https://orcid.org/0000-0002-7326-6278</orcidid><orcidid>https://orcid.org/0000-0002-9477-3017</orcidid></search><sort><creationdate>20200815</creationdate><title>Electronic band structure of three-dimensional topological insulators with different stoichiometry composition</title><author>Grimaldi ; Pacile, D. ; Eremeev, S. ; De Luca, O. ; Policicchio, A. ; Moras, P. ; Sheverdyaeva, P. M. ; Kundu, A. K. ; Aliev, Z. S. ; Rudolf, P. ; Agostino, R. G. ; Chukov, E. ; Papagno, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-bf55408b4cb82c14ea5bd59f6a41596f9fa2524d44fb5ca7f67af46e498c91c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Band structure of solids</topic><topic>Density functional theory</topic><topic>Lead</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Photoelectric emission</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Science & Technology</topic><topic>Stoichiometry</topic><topic>Technology</topic><topic>Tin</topic><topic>Topological insulators</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grimaldi</creatorcontrib><creatorcontrib>Pacile, D.</creatorcontrib><creatorcontrib>Eremeev, S.</creatorcontrib><creatorcontrib>De Luca, O.</creatorcontrib><creatorcontrib>Policicchio, A.</creatorcontrib><creatorcontrib>Moras, P.</creatorcontrib><creatorcontrib>Sheverdyaeva, P. M.</creatorcontrib><creatorcontrib>Kundu, A. K.</creatorcontrib><creatorcontrib>Aliev, Z. S.</creatorcontrib><creatorcontrib>Rudolf, P.</creatorcontrib><creatorcontrib>Agostino, R. G.</creatorcontrib><creatorcontrib>Chukov, E.</creatorcontrib><creatorcontrib>Papagno, M.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grimaldi</au><au>Pacile, D.</au><au>Eremeev, S.</au><au>De Luca, O.</au><au>Policicchio, A.</au><au>Moras, P.</au><au>Sheverdyaeva, P. M.</au><au>Kundu, A. K.</au><au>Aliev, Z. S.</au><au>Rudolf, P.</au><au>Agostino, R. G.</au><au>Chukov, E.</au><au>Papagno, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic band structure of three-dimensional topological insulators with different stoichiometry composition</atitle><jtitle>Physical review. B</jtitle><stitle>PHYS REV B</stitle><date>2020-08-15</date><risdate>2020</risdate><volume>102</volume><issue>8</issue><spage>1</spage><pages>1-</pages><artnum>085118</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We report on a comparative theoretical and experimental investigation of the electronic band structure of a family of three-dimensional topological insulators, A(IV)Bi(4)Te(7-x)Se(x) (A(IV) = Sn, Pb; x = 0, 1). We prove by means of density functional theory calculations and angle-resolved photoemission spectroscopy measurements that partial or total substitution of heavy atoms by lighter isoelectronic ones affects the electronic properties of topological insulators. In particular, we show that the modification of the Dirac cone position relative to the Fermi level and the bulk band gap size can be controlled by varying the stoichiometry of the compound. We also demonstrate that the investigated systems are inert to oxygen exposure.</abstract><cop>COLLEGE PK</cop><pub>Amer Physical Soc</pub><doi>10.1103/PhysRevB.102.085118</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5172-1866</orcidid><orcidid>https://orcid.org/0000-0002-7771-8737</orcidid><orcidid>https://orcid.org/0000-0002-4428-0863</orcidid><orcidid>https://orcid.org/0000-0001-6219-3889</orcidid><orcidid>https://orcid.org/0000-0002-4231-1638</orcidid><orcidid>https://orcid.org/0000-0002-4418-1769</orcidid><orcidid>https://orcid.org/0000-0002-7326-6278</orcidid><orcidid>https://orcid.org/0000-0002-9477-3017</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2020-08, Vol.102 (8), p.1, Article 085118 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_webofscience_primary_000557728500003CitationCount |
source | APS_美国物理学会期刊; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Band structure of solids Density functional theory Lead Materials Science Materials Science, Multidisciplinary Photoelectric emission Physical Sciences Physics Physics, Applied Physics, Condensed Matter Science & Technology Stoichiometry Technology Tin Topological insulators Topology |
title | Electronic band structure of three-dimensional topological insulators with different stoichiometry composition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T21%3A27%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20band%20structure%20of%20three-dimensional%20topological%20insulators%20with%20different%20stoichiometry%20composition&rft.jtitle=Physical%20review.%20B&rft.au=Grimaldi&rft.date=2020-08-15&rft.volume=102&rft.issue=8&rft.spage=1&rft.pages=1-&rft.artnum=085118&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.102.085118&rft_dat=%3Cproquest_webof%3E2440094994%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440094994&rft_id=info:pmid/&rfr_iscdi=true |