Electronic band structure of three-dimensional topological insulators with different stoichiometry composition

We report on a comparative theoretical and experimental investigation of the electronic band structure of a family of three-dimensional topological insulators, A(IV)Bi(4)Te(7-x)Se(x) (A(IV) = Sn, Pb; x = 0, 1). We prove by means of density functional theory calculations and angle-resolved photoemiss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-08, Vol.102 (8), p.1, Article 085118
Hauptverfasser: Grimaldi, Pacile, D., Eremeev, S., De Luca, O., Policicchio, A., Moras, P., Sheverdyaeva, P. M., Kundu, A. K., Aliev, Z. S., Rudolf, P., Agostino, R. G., Chukov, E., Papagno, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 1
container_title Physical review. B
container_volume 102
creator Grimaldi
Pacile, D.
Eremeev, S.
De Luca, O.
Policicchio, A.
Moras, P.
Sheverdyaeva, P. M.
Kundu, A. K.
Aliev, Z. S.
Rudolf, P.
Agostino, R. G.
Chukov, E.
Papagno, M.
description We report on a comparative theoretical and experimental investigation of the electronic band structure of a family of three-dimensional topological insulators, A(IV)Bi(4)Te(7-x)Se(x) (A(IV) = Sn, Pb; x = 0, 1). We prove by means of density functional theory calculations and angle-resolved photoemission spectroscopy measurements that partial or total substitution of heavy atoms by lighter isoelectronic ones affects the electronic properties of topological insulators. In particular, we show that the modification of the Dirac cone position relative to the Fermi level and the bulk band gap size can be controlled by varying the stoichiometry of the compound. We also demonstrate that the investigated systems are inert to oxygen exposure.
doi_str_mv 10.1103/PhysRevB.102.085118
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000557728500003CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440094994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-bf55408b4cb82c14ea5bd59f6a41596f9fa2524d44fb5ca7f67af46e498c91c53</originalsourceid><addsrcrecordid>eNqNkF9LwzAUxYsoOHSfwJeCj9KZpEnbPGqZf2CgiD6XNL2xGV1Sk9Sxb2_GdM8-3cPl_A6ckyRXGC0wRvnta7_zb_B9v8CILFDFMK5OkhmhBc84L_jpUTN0nsy9XyOEcIF4ifgsMcsBZHDWaJm2wnSpD26SYXKQWpWG3gFknd6A8doaMaTBjnawn1pGrY2fBhGs8-lWhz7ttFLgwIQYYrXstd1AcLtU2s1ovQ4x4TI5U2LwMP-9F8nHw_K9fspWL4_P9d0qkzkhIWsVYxRVLZVtRSSmIFjbMa4KQTHjheJKEEZoR6lqmRSlKkqhaAGUV5JjyfKL5PqQOzr7NYEPzdpOLhbwDaEUIU45p9GVH1zSWe8dqGZ0eiPcrsGo2W_b_G0bH6Q5bBup6kBtobXKSw1GwpGM4zJWlqRiUaG81kHsi9d2MiGiN_9H8x94s5LV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440094994</pqid></control><display><type>article</type><title>Electronic band structure of three-dimensional topological insulators with different stoichiometry composition</title><source>APS_美国物理学会期刊</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Grimaldi ; Pacile, D. ; Eremeev, S. ; De Luca, O. ; Policicchio, A. ; Moras, P. ; Sheverdyaeva, P. M. ; Kundu, A. K. ; Aliev, Z. S. ; Rudolf, P. ; Agostino, R. G. ; Chukov, E. ; Papagno, M.</creator><creatorcontrib>Grimaldi ; Pacile, D. ; Eremeev, S. ; De Luca, O. ; Policicchio, A. ; Moras, P. ; Sheverdyaeva, P. M. ; Kundu, A. K. ; Aliev, Z. S. ; Rudolf, P. ; Agostino, R. G. ; Chukov, E. ; Papagno, M.</creatorcontrib><description>We report on a comparative theoretical and experimental investigation of the electronic band structure of a family of three-dimensional topological insulators, A(IV)Bi(4)Te(7-x)Se(x) (A(IV) = Sn, Pb; x = 0, 1). We prove by means of density functional theory calculations and angle-resolved photoemission spectroscopy measurements that partial or total substitution of heavy atoms by lighter isoelectronic ones affects the electronic properties of topological insulators. In particular, we show that the modification of the Dirac cone position relative to the Fermi level and the bulk band gap size can be controlled by varying the stoichiometry of the compound. We also demonstrate that the investigated systems are inert to oxygen exposure.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.102.085118</identifier><language>eng</language><publisher>COLLEGE PK: Amer Physical Soc</publisher><subject>Band structure of solids ; Density functional theory ; Lead ; Materials Science ; Materials Science, Multidisciplinary ; Photoelectric emission ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Science &amp; Technology ; Stoichiometry ; Technology ; Tin ; Topological insulators ; Topology</subject><ispartof>Physical review. B, 2020-08, Vol.102 (8), p.1, Article 085118</ispartof><rights>Copyright American Physical Society Aug 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000557728500003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c322t-bf55408b4cb82c14ea5bd59f6a41596f9fa2524d44fb5ca7f67af46e498c91c53</citedby><cites>FETCH-LOGICAL-c322t-bf55408b4cb82c14ea5bd59f6a41596f9fa2524d44fb5ca7f67af46e498c91c53</cites><orcidid>0000-0002-5172-1866 ; 0000-0002-7771-8737 ; 0000-0002-4428-0863 ; 0000-0001-6219-3889 ; 0000-0002-4231-1638 ; 0000-0002-4418-1769 ; 0000-0002-7326-6278 ; 0000-0002-9477-3017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2877,2878,27929,27930,28253</link.rule.ids></links><search><creatorcontrib>Grimaldi</creatorcontrib><creatorcontrib>Pacile, D.</creatorcontrib><creatorcontrib>Eremeev, S.</creatorcontrib><creatorcontrib>De Luca, O.</creatorcontrib><creatorcontrib>Policicchio, A.</creatorcontrib><creatorcontrib>Moras, P.</creatorcontrib><creatorcontrib>Sheverdyaeva, P. M.</creatorcontrib><creatorcontrib>Kundu, A. K.</creatorcontrib><creatorcontrib>Aliev, Z. S.</creatorcontrib><creatorcontrib>Rudolf, P.</creatorcontrib><creatorcontrib>Agostino, R. G.</creatorcontrib><creatorcontrib>Chukov, E.</creatorcontrib><creatorcontrib>Papagno, M.</creatorcontrib><title>Electronic band structure of three-dimensional topological insulators with different stoichiometry composition</title><title>Physical review. B</title><addtitle>PHYS REV B</addtitle><description>We report on a comparative theoretical and experimental investigation of the electronic band structure of a family of three-dimensional topological insulators, A(IV)Bi(4)Te(7-x)Se(x) (A(IV) = Sn, Pb; x = 0, 1). We prove by means of density functional theory calculations and angle-resolved photoemission spectroscopy measurements that partial or total substitution of heavy atoms by lighter isoelectronic ones affects the electronic properties of topological insulators. In particular, we show that the modification of the Dirac cone position relative to the Fermi level and the bulk band gap size can be controlled by varying the stoichiometry of the compound. We also demonstrate that the investigated systems are inert to oxygen exposure.</description><subject>Band structure of solids</subject><subject>Density functional theory</subject><subject>Lead</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Photoelectric emission</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Science &amp; Technology</subject><subject>Stoichiometry</subject><subject>Technology</subject><subject>Tin</subject><subject>Topological insulators</subject><subject>Topology</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkF9LwzAUxYsoOHSfwJeCj9KZpEnbPGqZf2CgiD6XNL2xGV1Sk9Sxb2_GdM8-3cPl_A6ckyRXGC0wRvnta7_zb_B9v8CILFDFMK5OkhmhBc84L_jpUTN0nsy9XyOEcIF4ifgsMcsBZHDWaJm2wnSpD26SYXKQWpWG3gFknd6A8doaMaTBjnawn1pGrY2fBhGs8-lWhz7ttFLgwIQYYrXstd1AcLtU2s1ovQ4x4TI5U2LwMP-9F8nHw_K9fspWL4_P9d0qkzkhIWsVYxRVLZVtRSSmIFjbMa4KQTHjheJKEEZoR6lqmRSlKkqhaAGUV5JjyfKL5PqQOzr7NYEPzdpOLhbwDaEUIU45p9GVH1zSWe8dqGZ0eiPcrsGo2W_b_G0bH6Q5bBup6kBtobXKSw1GwpGM4zJWlqRiUaG81kHsi9d2MiGiN_9H8x94s5LV</recordid><startdate>20200815</startdate><enddate>20200815</enddate><creator>Grimaldi</creator><creator>Pacile, D.</creator><creator>Eremeev, S.</creator><creator>De Luca, O.</creator><creator>Policicchio, A.</creator><creator>Moras, P.</creator><creator>Sheverdyaeva, P. M.</creator><creator>Kundu, A. K.</creator><creator>Aliev, Z. S.</creator><creator>Rudolf, P.</creator><creator>Agostino, R. G.</creator><creator>Chukov, E.</creator><creator>Papagno, M.</creator><general>Amer Physical Soc</general><general>American Physical Society</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5172-1866</orcidid><orcidid>https://orcid.org/0000-0002-7771-8737</orcidid><orcidid>https://orcid.org/0000-0002-4428-0863</orcidid><orcidid>https://orcid.org/0000-0001-6219-3889</orcidid><orcidid>https://orcid.org/0000-0002-4231-1638</orcidid><orcidid>https://orcid.org/0000-0002-4418-1769</orcidid><orcidid>https://orcid.org/0000-0002-7326-6278</orcidid><orcidid>https://orcid.org/0000-0002-9477-3017</orcidid></search><sort><creationdate>20200815</creationdate><title>Electronic band structure of three-dimensional topological insulators with different stoichiometry composition</title><author>Grimaldi ; Pacile, D. ; Eremeev, S. ; De Luca, O. ; Policicchio, A. ; Moras, P. ; Sheverdyaeva, P. M. ; Kundu, A. K. ; Aliev, Z. S. ; Rudolf, P. ; Agostino, R. G. ; Chukov, E. ; Papagno, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-bf55408b4cb82c14ea5bd59f6a41596f9fa2524d44fb5ca7f67af46e498c91c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Band structure of solids</topic><topic>Density functional theory</topic><topic>Lead</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Photoelectric emission</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Science &amp; Technology</topic><topic>Stoichiometry</topic><topic>Technology</topic><topic>Tin</topic><topic>Topological insulators</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grimaldi</creatorcontrib><creatorcontrib>Pacile, D.</creatorcontrib><creatorcontrib>Eremeev, S.</creatorcontrib><creatorcontrib>De Luca, O.</creatorcontrib><creatorcontrib>Policicchio, A.</creatorcontrib><creatorcontrib>Moras, P.</creatorcontrib><creatorcontrib>Sheverdyaeva, P. M.</creatorcontrib><creatorcontrib>Kundu, A. K.</creatorcontrib><creatorcontrib>Aliev, Z. S.</creatorcontrib><creatorcontrib>Rudolf, P.</creatorcontrib><creatorcontrib>Agostino, R. G.</creatorcontrib><creatorcontrib>Chukov, E.</creatorcontrib><creatorcontrib>Papagno, M.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grimaldi</au><au>Pacile, D.</au><au>Eremeev, S.</au><au>De Luca, O.</au><au>Policicchio, A.</au><au>Moras, P.</au><au>Sheverdyaeva, P. M.</au><au>Kundu, A. K.</au><au>Aliev, Z. S.</au><au>Rudolf, P.</au><au>Agostino, R. G.</au><au>Chukov, E.</au><au>Papagno, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic band structure of three-dimensional topological insulators with different stoichiometry composition</atitle><jtitle>Physical review. B</jtitle><stitle>PHYS REV B</stitle><date>2020-08-15</date><risdate>2020</risdate><volume>102</volume><issue>8</issue><spage>1</spage><pages>1-</pages><artnum>085118</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We report on a comparative theoretical and experimental investigation of the electronic band structure of a family of three-dimensional topological insulators, A(IV)Bi(4)Te(7-x)Se(x) (A(IV) = Sn, Pb; x = 0, 1). We prove by means of density functional theory calculations and angle-resolved photoemission spectroscopy measurements that partial or total substitution of heavy atoms by lighter isoelectronic ones affects the electronic properties of topological insulators. In particular, we show that the modification of the Dirac cone position relative to the Fermi level and the bulk band gap size can be controlled by varying the stoichiometry of the compound. We also demonstrate that the investigated systems are inert to oxygen exposure.</abstract><cop>COLLEGE PK</cop><pub>Amer Physical Soc</pub><doi>10.1103/PhysRevB.102.085118</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5172-1866</orcidid><orcidid>https://orcid.org/0000-0002-7771-8737</orcidid><orcidid>https://orcid.org/0000-0002-4428-0863</orcidid><orcidid>https://orcid.org/0000-0001-6219-3889</orcidid><orcidid>https://orcid.org/0000-0002-4231-1638</orcidid><orcidid>https://orcid.org/0000-0002-4418-1769</orcidid><orcidid>https://orcid.org/0000-0002-7326-6278</orcidid><orcidid>https://orcid.org/0000-0002-9477-3017</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2020-08, Vol.102 (8), p.1, Article 085118
issn 2469-9950
2469-9969
language eng
recordid cdi_webofscience_primary_000557728500003CitationCount
source APS_美国物理学会期刊; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Band structure of solids
Density functional theory
Lead
Materials Science
Materials Science, Multidisciplinary
Photoelectric emission
Physical Sciences
Physics
Physics, Applied
Physics, Condensed Matter
Science & Technology
Stoichiometry
Technology
Tin
Topological insulators
Topology
title Electronic band structure of three-dimensional topological insulators with different stoichiometry composition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T21%3A27%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20band%20structure%20of%20three-dimensional%20topological%20insulators%20with%20different%20stoichiometry%20composition&rft.jtitle=Physical%20review.%20B&rft.au=Grimaldi&rft.date=2020-08-15&rft.volume=102&rft.issue=8&rft.spage=1&rft.pages=1-&rft.artnum=085118&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.102.085118&rft_dat=%3Cproquest_webof%3E2440094994%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440094994&rft_id=info:pmid/&rfr_iscdi=true