In Situ Formation of Multiple Schottky Barriers in a Ti(3)C(2)MXene Film and its Application in Highly Sensitive Gas Sensors

The main gas-sensing mechanisms of 2D materials are surface charge transfer by analytes and Schottky barrier (SB) modulation at the interface between the metallic and semiconducting surfaces. In particular, dramatic differences in the gas-sensing performances of 2D materials originate from SB modula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-10, Vol.30 (40), Article 2003998
Hauptverfasser: Choi, Junghoon, Kim, Yong-Jae, Cho, Soo-Yeon, Park, Kangho, Kang, Hohyung, Kim, Seon Joon, Jung, Hee-Tae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 40
container_start_page
container_title Advanced functional materials
container_volume 30
creator Choi, Junghoon
Kim, Yong-Jae
Cho, Soo-Yeon
Park, Kangho
Kang, Hohyung
Kim, Seon Joon
Jung, Hee-Tae
description The main gas-sensing mechanisms of 2D materials are surface charge transfer by analytes and Schottky barrier (SB) modulation at the interface between the metallic and semiconducting surfaces. In particular, dramatic differences in the gas-sensing performances of 2D materials originate from SB modulation. However, SB sites typically exist only at the interface between the semiconducting channel material and the metal electrode. Herein, in situ formed multiple SBs in a single gas-sensing channel are demonstrated, which are derived from the heterojunction of metallic Ti(3)C(2)and semiconducting TiO2. In stark contrast with previous techniques, edge-oxidized Ti(3)C(2)flakes are synthesized by solution oxidation, allowing the uniform formation of TiO(2)crystals on all flakes that comprise the gas sensing channel. Oxidized colloidal solutions are subjected to vacuum filtration to automatically form SB sites at the multiple inter-flake junctions in both the outer surface and inner bulk regions of the film. The TiO2/Ti(3)C(2)composite sensor shows 13.7 times higher NO(2)sensitivity as compared with pristine Ti(3)C(2)MXene, while the responses of the reducing gases are almost unchanged. The results suggest a new strategy for improving gas-sensing performance by maximizing the density of SB sites through a simple method.
doi_str_mv 10.1002/adfm.202003998
format Article
fullrecord <record><control><sourceid>webofscience</sourceid><recordid>TN_cdi_webofscience_primary_000557406800001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>000557406800001</sourcerecordid><originalsourceid>FETCH-webofscience_primary_0005574068000013</originalsourceid><addsrcrecordid>eNqVjz1PwzAURS0EEuVjZX5jK9TybLdJOkLUUIZO6dCtMqlDHzh2ZDugSPx4qoKYYbrnSkdXuozdcJxwRHGndnUzESgQ5XyenbABT3gyliiy01_mm3N2EcIrIk9TOR2wzycLJcUOCucbFclZcDWsOhOpNRrKau9ifOvhQXlP2gcgCwrWNJSjfChGq422GgoyDSi7A4oB7tvWUPU9dZCX9LI3PZTaBor0ruFRhWNzPlyxs1qZoK9_8pLdFot1vhx_6GdXh4q0rfS29dQo328RcTZLp5hkB0Iu_2tnf7dziscDuetslF-g-mpO</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In Situ Formation of Multiple Schottky Barriers in a Ti(3)C(2)MXene Film and its Application in Highly Sensitive Gas Sensors</title><source>Access via Wiley Online Library</source><creator>Choi, Junghoon ; Kim, Yong-Jae ; Cho, Soo-Yeon ; Park, Kangho ; Kang, Hohyung ; Kim, Seon Joon ; Jung, Hee-Tae</creator><creatorcontrib>Choi, Junghoon ; Kim, Yong-Jae ; Cho, Soo-Yeon ; Park, Kangho ; Kang, Hohyung ; Kim, Seon Joon ; Jung, Hee-Tae</creatorcontrib><description>The main gas-sensing mechanisms of 2D materials are surface charge transfer by analytes and Schottky barrier (SB) modulation at the interface between the metallic and semiconducting surfaces. In particular, dramatic differences in the gas-sensing performances of 2D materials originate from SB modulation. However, SB sites typically exist only at the interface between the semiconducting channel material and the metal electrode. Herein, in situ formed multiple SBs in a single gas-sensing channel are demonstrated, which are derived from the heterojunction of metallic Ti(3)C(2)and semiconducting TiO2. In stark contrast with previous techniques, edge-oxidized Ti(3)C(2)flakes are synthesized by solution oxidation, allowing the uniform formation of TiO(2)crystals on all flakes that comprise the gas sensing channel. Oxidized colloidal solutions are subjected to vacuum filtration to automatically form SB sites at the multiple inter-flake junctions in both the outer surface and inner bulk regions of the film. The TiO2/Ti(3)C(2)composite sensor shows 13.7 times higher NO(2)sensitivity as compared with pristine Ti(3)C(2)MXene, while the responses of the reducing gases are almost unchanged. The results suggest a new strategy for improving gas-sensing performance by maximizing the density of SB sites through a simple method.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202003998</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; Materials Science ; Materials Science, Multidisciplinary ; Nanoscience &amp; Nanotechnology ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Technology</subject><ispartof>Advanced functional materials, 2020-10, Vol.30 (40), Article 2003998</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>215</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000557406800001</woscitedreferencesoriginalsourcerecordid><cites>FETCH-webofscience_primary_0005574068000013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Choi, Junghoon</creatorcontrib><creatorcontrib>Kim, Yong-Jae</creatorcontrib><creatorcontrib>Cho, Soo-Yeon</creatorcontrib><creatorcontrib>Park, Kangho</creatorcontrib><creatorcontrib>Kang, Hohyung</creatorcontrib><creatorcontrib>Kim, Seon Joon</creatorcontrib><creatorcontrib>Jung, Hee-Tae</creatorcontrib><title>In Situ Formation of Multiple Schottky Barriers in a Ti(3)C(2)MXene Film and its Application in Highly Sensitive Gas Sensors</title><title>Advanced functional materials</title><addtitle>ADV FUNCT MATER</addtitle><description>The main gas-sensing mechanisms of 2D materials are surface charge transfer by analytes and Schottky barrier (SB) modulation at the interface between the metallic and semiconducting surfaces. In particular, dramatic differences in the gas-sensing performances of 2D materials originate from SB modulation. However, SB sites typically exist only at the interface between the semiconducting channel material and the metal electrode. Herein, in situ formed multiple SBs in a single gas-sensing channel are demonstrated, which are derived from the heterojunction of metallic Ti(3)C(2)and semiconducting TiO2. In stark contrast with previous techniques, edge-oxidized Ti(3)C(2)flakes are synthesized by solution oxidation, allowing the uniform formation of TiO(2)crystals on all flakes that comprise the gas sensing channel. Oxidized colloidal solutions are subjected to vacuum filtration to automatically form SB sites at the multiple inter-flake junctions in both the outer surface and inner bulk regions of the film. The TiO2/Ti(3)C(2)composite sensor shows 13.7 times higher NO(2)sensitivity as compared with pristine Ti(3)C(2)MXene, while the responses of the reducing gases are almost unchanged. The results suggest a new strategy for improving gas-sensing performance by maximizing the density of SB sites through a simple method.</description><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Technology</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqVjz1PwzAURS0EEuVjZX5jK9TybLdJOkLUUIZO6dCtMqlDHzh2ZDugSPx4qoKYYbrnSkdXuozdcJxwRHGndnUzESgQ5XyenbABT3gyliiy01_mm3N2EcIrIk9TOR2wzycLJcUOCucbFclZcDWsOhOpNRrKau9ifOvhQXlP2gcgCwrWNJSjfChGq422GgoyDSi7A4oB7tvWUPU9dZCX9LI3PZTaBor0ruFRhWNzPlyxs1qZoK9_8pLdFot1vhx_6GdXh4q0rfS29dQo328RcTZLp5hkB0Iu_2tnf7dziscDuetslF-g-mpO</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Choi, Junghoon</creator><creator>Kim, Yong-Jae</creator><creator>Cho, Soo-Yeon</creator><creator>Park, Kangho</creator><creator>Kang, Hohyung</creator><creator>Kim, Seon Joon</creator><creator>Jung, Hee-Tae</creator><general>Wiley</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope></search><sort><creationdate>20201001</creationdate><title>In Situ Formation of Multiple Schottky Barriers in a Ti(3)C(2)MXene Film and its Application in Highly Sensitive Gas Sensors</title><author>Choi, Junghoon ; Kim, Yong-Jae ; Cho, Soo-Yeon ; Park, Kangho ; Kang, Hohyung ; Kim, Seon Joon ; Jung, Hee-Tae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-webofscience_primary_0005574068000013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Junghoon</creatorcontrib><creatorcontrib>Kim, Yong-Jae</creatorcontrib><creatorcontrib>Cho, Soo-Yeon</creatorcontrib><creatorcontrib>Park, Kangho</creatorcontrib><creatorcontrib>Kang, Hohyung</creatorcontrib><creatorcontrib>Kim, Seon Joon</creatorcontrib><creatorcontrib>Jung, Hee-Tae</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Junghoon</au><au>Kim, Yong-Jae</au><au>Cho, Soo-Yeon</au><au>Park, Kangho</au><au>Kang, Hohyung</au><au>Kim, Seon Joon</au><au>Jung, Hee-Tae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Formation of Multiple Schottky Barriers in a Ti(3)C(2)MXene Film and its Application in Highly Sensitive Gas Sensors</atitle><jtitle>Advanced functional materials</jtitle><stitle>ADV FUNCT MATER</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>30</volume><issue>40</issue><artnum>2003998</artnum><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The main gas-sensing mechanisms of 2D materials are surface charge transfer by analytes and Schottky barrier (SB) modulation at the interface between the metallic and semiconducting surfaces. In particular, dramatic differences in the gas-sensing performances of 2D materials originate from SB modulation. However, SB sites typically exist only at the interface between the semiconducting channel material and the metal electrode. Herein, in situ formed multiple SBs in a single gas-sensing channel are demonstrated, which are derived from the heterojunction of metallic Ti(3)C(2)and semiconducting TiO2. In stark contrast with previous techniques, edge-oxidized Ti(3)C(2)flakes are synthesized by solution oxidation, allowing the uniform formation of TiO(2)crystals on all flakes that comprise the gas sensing channel. Oxidized colloidal solutions are subjected to vacuum filtration to automatically form SB sites at the multiple inter-flake junctions in both the outer surface and inner bulk regions of the film. The TiO2/Ti(3)C(2)composite sensor shows 13.7 times higher NO(2)sensitivity as compared with pristine Ti(3)C(2)MXene, while the responses of the reducing gases are almost unchanged. The results suggest a new strategy for improving gas-sensing performance by maximizing the density of SB sites through a simple method.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><doi>10.1002/adfm.202003998</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-10, Vol.30 (40), Article 2003998
issn 1616-301X
1616-3028
language eng
recordid cdi_webofscience_primary_000557406800001
source Access via Wiley Online Library
subjects Chemistry
Chemistry, Multidisciplinary
Chemistry, Physical
Materials Science
Materials Science, Multidisciplinary
Nanoscience & Nanotechnology
Physical Sciences
Physics
Physics, Applied
Physics, Condensed Matter
Science & Technology
Science & Technology - Other Topics
Technology
title In Situ Formation of Multiple Schottky Barriers in a Ti(3)C(2)MXene Film and its Application in Highly Sensitive Gas Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T10%3A21%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-webofscience&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Formation%20of%20Multiple%20Schottky%20Barriers%20in%20a%20Ti(3)C(2)MXene%20Film%20and%20its%20Application%20in%20Highly%20Sensitive%20Gas%20Sensors&rft.jtitle=Advanced%20functional%20materials&rft.au=Choi,%20Junghoon&rft.date=2020-10-01&rft.volume=30&rft.issue=40&rft.artnum=2003998&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202003998&rft_dat=%3Cwebofscience%3E000557406800001%3C/webofscience%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true