In Situ Formation of Multiple Schottky Barriers in a Ti(3)C(2)MXene Film and its Application in Highly Sensitive Gas Sensors
The main gas-sensing mechanisms of 2D materials are surface charge transfer by analytes and Schottky barrier (SB) modulation at the interface between the metallic and semiconducting surfaces. In particular, dramatic differences in the gas-sensing performances of 2D materials originate from SB modula...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2020-10, Vol.30 (40), Article 2003998 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 40 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Choi, Junghoon Kim, Yong-Jae Cho, Soo-Yeon Park, Kangho Kang, Hohyung Kim, Seon Joon Jung, Hee-Tae |
description | The main gas-sensing mechanisms of 2D materials are surface charge transfer by analytes and Schottky barrier (SB) modulation at the interface between the metallic and semiconducting surfaces. In particular, dramatic differences in the gas-sensing performances of 2D materials originate from SB modulation. However, SB sites typically exist only at the interface between the semiconducting channel material and the metal electrode. Herein, in situ formed multiple SBs in a single gas-sensing channel are demonstrated, which are derived from the heterojunction of metallic Ti(3)C(2)and semiconducting TiO2. In stark contrast with previous techniques, edge-oxidized Ti(3)C(2)flakes are synthesized by solution oxidation, allowing the uniform formation of TiO(2)crystals on all flakes that comprise the gas sensing channel. Oxidized colloidal solutions are subjected to vacuum filtration to automatically form SB sites at the multiple inter-flake junctions in both the outer surface and inner bulk regions of the film. The TiO2/Ti(3)C(2)composite sensor shows 13.7 times higher NO(2)sensitivity as compared with pristine Ti(3)C(2)MXene, while the responses of the reducing gases are almost unchanged. The results suggest a new strategy for improving gas-sensing performance by maximizing the density of SB sites through a simple method. |
doi_str_mv | 10.1002/adfm.202003998 |
format | Article |
fullrecord | <record><control><sourceid>webofscience</sourceid><recordid>TN_cdi_webofscience_primary_000557406800001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>000557406800001</sourcerecordid><originalsourceid>FETCH-webofscience_primary_0005574068000013</originalsourceid><addsrcrecordid>eNqVjz1PwzAURS0EEuVjZX5jK9TybLdJOkLUUIZO6dCtMqlDHzh2ZDugSPx4qoKYYbrnSkdXuozdcJxwRHGndnUzESgQ5XyenbABT3gyliiy01_mm3N2EcIrIk9TOR2wzycLJcUOCucbFclZcDWsOhOpNRrKau9ifOvhQXlP2gcgCwrWNJSjfChGq422GgoyDSi7A4oB7tvWUPU9dZCX9LI3PZTaBor0ruFRhWNzPlyxs1qZoK9_8pLdFot1vhx_6GdXh4q0rfS29dQo328RcTZLp5hkB0Iu_2tnf7dziscDuetslF-g-mpO</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In Situ Formation of Multiple Schottky Barriers in a Ti(3)C(2)MXene Film and its Application in Highly Sensitive Gas Sensors</title><source>Access via Wiley Online Library</source><creator>Choi, Junghoon ; Kim, Yong-Jae ; Cho, Soo-Yeon ; Park, Kangho ; Kang, Hohyung ; Kim, Seon Joon ; Jung, Hee-Tae</creator><creatorcontrib>Choi, Junghoon ; Kim, Yong-Jae ; Cho, Soo-Yeon ; Park, Kangho ; Kang, Hohyung ; Kim, Seon Joon ; Jung, Hee-Tae</creatorcontrib><description>The main gas-sensing mechanisms of 2D materials are surface charge transfer by analytes and Schottky barrier (SB) modulation at the interface between the metallic and semiconducting surfaces. In particular, dramatic differences in the gas-sensing performances of 2D materials originate from SB modulation. However, SB sites typically exist only at the interface between the semiconducting channel material and the metal electrode. Herein, in situ formed multiple SBs in a single gas-sensing channel are demonstrated, which are derived from the heterojunction of metallic Ti(3)C(2)and semiconducting TiO2. In stark contrast with previous techniques, edge-oxidized Ti(3)C(2)flakes are synthesized by solution oxidation, allowing the uniform formation of TiO(2)crystals on all flakes that comprise the gas sensing channel. Oxidized colloidal solutions are subjected to vacuum filtration to automatically form SB sites at the multiple inter-flake junctions in both the outer surface and inner bulk regions of the film. The TiO2/Ti(3)C(2)composite sensor shows 13.7 times higher NO(2)sensitivity as compared with pristine Ti(3)C(2)MXene, while the responses of the reducing gases are almost unchanged. The results suggest a new strategy for improving gas-sensing performance by maximizing the density of SB sites through a simple method.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202003998</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; Materials Science ; Materials Science, Multidisciplinary ; Nanoscience & Nanotechnology ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Science & Technology ; Science & Technology - Other Topics ; Technology</subject><ispartof>Advanced functional materials, 2020-10, Vol.30 (40), Article 2003998</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>215</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000557406800001</woscitedreferencesoriginalsourcerecordid><cites>FETCH-webofscience_primary_0005574068000013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Choi, Junghoon</creatorcontrib><creatorcontrib>Kim, Yong-Jae</creatorcontrib><creatorcontrib>Cho, Soo-Yeon</creatorcontrib><creatorcontrib>Park, Kangho</creatorcontrib><creatorcontrib>Kang, Hohyung</creatorcontrib><creatorcontrib>Kim, Seon Joon</creatorcontrib><creatorcontrib>Jung, Hee-Tae</creatorcontrib><title>In Situ Formation of Multiple Schottky Barriers in a Ti(3)C(2)MXene Film and its Application in Highly Sensitive Gas Sensors</title><title>Advanced functional materials</title><addtitle>ADV FUNCT MATER</addtitle><description>The main gas-sensing mechanisms of 2D materials are surface charge transfer by analytes and Schottky barrier (SB) modulation at the interface between the metallic and semiconducting surfaces. In particular, dramatic differences in the gas-sensing performances of 2D materials originate from SB modulation. However, SB sites typically exist only at the interface between the semiconducting channel material and the metal electrode. Herein, in situ formed multiple SBs in a single gas-sensing channel are demonstrated, which are derived from the heterojunction of metallic Ti(3)C(2)and semiconducting TiO2. In stark contrast with previous techniques, edge-oxidized Ti(3)C(2)flakes are synthesized by solution oxidation, allowing the uniform formation of TiO(2)crystals on all flakes that comprise the gas sensing channel. Oxidized colloidal solutions are subjected to vacuum filtration to automatically form SB sites at the multiple inter-flake junctions in both the outer surface and inner bulk regions of the film. The TiO2/Ti(3)C(2)composite sensor shows 13.7 times higher NO(2)sensitivity as compared with pristine Ti(3)C(2)MXene, while the responses of the reducing gases are almost unchanged. The results suggest a new strategy for improving gas-sensing performance by maximizing the density of SB sites through a simple method.</description><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience & Nanotechnology</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Technology</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqVjz1PwzAURS0EEuVjZX5jK9TybLdJOkLUUIZO6dCtMqlDHzh2ZDugSPx4qoKYYbrnSkdXuozdcJxwRHGndnUzESgQ5XyenbABT3gyliiy01_mm3N2EcIrIk9TOR2wzycLJcUOCucbFclZcDWsOhOpNRrKau9ifOvhQXlP2gcgCwrWNJSjfChGq422GgoyDSi7A4oB7tvWUPU9dZCX9LI3PZTaBor0ruFRhWNzPlyxs1qZoK9_8pLdFot1vhx_6GdXh4q0rfS29dQo328RcTZLp5hkB0Iu_2tnf7dziscDuetslF-g-mpO</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Choi, Junghoon</creator><creator>Kim, Yong-Jae</creator><creator>Cho, Soo-Yeon</creator><creator>Park, Kangho</creator><creator>Kang, Hohyung</creator><creator>Kim, Seon Joon</creator><creator>Jung, Hee-Tae</creator><general>Wiley</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope></search><sort><creationdate>20201001</creationdate><title>In Situ Formation of Multiple Schottky Barriers in a Ti(3)C(2)MXene Film and its Application in Highly Sensitive Gas Sensors</title><author>Choi, Junghoon ; Kim, Yong-Jae ; Cho, Soo-Yeon ; Park, Kangho ; Kang, Hohyung ; Kim, Seon Joon ; Jung, Hee-Tae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-webofscience_primary_0005574068000013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience & Nanotechnology</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Junghoon</creatorcontrib><creatorcontrib>Kim, Yong-Jae</creatorcontrib><creatorcontrib>Cho, Soo-Yeon</creatorcontrib><creatorcontrib>Park, Kangho</creatorcontrib><creatorcontrib>Kang, Hohyung</creatorcontrib><creatorcontrib>Kim, Seon Joon</creatorcontrib><creatorcontrib>Jung, Hee-Tae</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Junghoon</au><au>Kim, Yong-Jae</au><au>Cho, Soo-Yeon</au><au>Park, Kangho</au><au>Kang, Hohyung</au><au>Kim, Seon Joon</au><au>Jung, Hee-Tae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Formation of Multiple Schottky Barriers in a Ti(3)C(2)MXene Film and its Application in Highly Sensitive Gas Sensors</atitle><jtitle>Advanced functional materials</jtitle><stitle>ADV FUNCT MATER</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>30</volume><issue>40</issue><artnum>2003998</artnum><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The main gas-sensing mechanisms of 2D materials are surface charge transfer by analytes and Schottky barrier (SB) modulation at the interface between the metallic and semiconducting surfaces. In particular, dramatic differences in the gas-sensing performances of 2D materials originate from SB modulation. However, SB sites typically exist only at the interface between the semiconducting channel material and the metal electrode. Herein, in situ formed multiple SBs in a single gas-sensing channel are demonstrated, which are derived from the heterojunction of metallic Ti(3)C(2)and semiconducting TiO2. In stark contrast with previous techniques, edge-oxidized Ti(3)C(2)flakes are synthesized by solution oxidation, allowing the uniform formation of TiO(2)crystals on all flakes that comprise the gas sensing channel. Oxidized colloidal solutions are subjected to vacuum filtration to automatically form SB sites at the multiple inter-flake junctions in both the outer surface and inner bulk regions of the film. The TiO2/Ti(3)C(2)composite sensor shows 13.7 times higher NO(2)sensitivity as compared with pristine Ti(3)C(2)MXene, while the responses of the reducing gases are almost unchanged. The results suggest a new strategy for improving gas-sensing performance by maximizing the density of SB sites through a simple method.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><doi>10.1002/adfm.202003998</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-10, Vol.30 (40), Article 2003998 |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_webofscience_primary_000557406800001 |
source | Access via Wiley Online Library |
subjects | Chemistry Chemistry, Multidisciplinary Chemistry, Physical Materials Science Materials Science, Multidisciplinary Nanoscience & Nanotechnology Physical Sciences Physics Physics, Applied Physics, Condensed Matter Science & Technology Science & Technology - Other Topics Technology |
title | In Situ Formation of Multiple Schottky Barriers in a Ti(3)C(2)MXene Film and its Application in Highly Sensitive Gas Sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T10%3A21%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-webofscience&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Formation%20of%20Multiple%20Schottky%20Barriers%20in%20a%20Ti(3)C(2)MXene%20Film%20and%20its%20Application%20in%20Highly%20Sensitive%20Gas%20Sensors&rft.jtitle=Advanced%20functional%20materials&rft.au=Choi,%20Junghoon&rft.date=2020-10-01&rft.volume=30&rft.issue=40&rft.artnum=2003998&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202003998&rft_dat=%3Cwebofscience%3E000557406800001%3C/webofscience%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |