The sums of symplectic, Hamiltonian, and skew-Hamiltonian matrices

A complex 2n×2n matrix A is called skew-Hamiltonian, Hamiltonian, and symplectic if AJ=A, AJ=−A, and AJ=A−1, respectively, in which J=[0In−In0] and AJ=J−1ATJ. We prove that each 2n×2n matrix is a sum of type “symplectic + Hamiltonian”. A 2n×2n matrix A is a sum of type “symplectic + symplectic” if a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2020-10, Vol.603, p.84-90
Hauptverfasser: de la Cruz, Ralph John, Paras, Agnes T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A complex 2n×2n matrix A is called skew-Hamiltonian, Hamiltonian, and symplectic if AJ=A, AJ=−A, and AJ=A−1, respectively, in which J=[0In−In0] and AJ=J−1ATJ. We prove that each 2n×2n matrix is a sum of type “symplectic + Hamiltonian”. A 2n×2n matrix A is a sum of type “symplectic + symplectic” if and only if AAJ is similar to AJA. A 2n×2n matrix A is a sum of type “symplectic + skew-Hamiltonian” if and only if the Jordan blocks of A−AJ with eigenvalue 2i and size k≥ 2 come in pairs of the form Jk(2i)⊕Jk(2i) and Jk(2i)⊕Jk+1(2i).
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2020.05.036