Couplings of Polarization with Interfacial Deep Trap and Schottky Interface Controlled Ferroelectric Memristive Switching
Memristors with excellent scalability have the potential to revolutionize not only the field of information storage but also neuromorphic computing. Conventional metal oxides are widely used as resistive switching materials in memristors. Interface‐type memristors based on ferroelectric materials ar...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2020-10, Vol.30 (43), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 43 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Chen, Aiping Zhang, Wenrui Dedon, Liv R. Chen, Di Khatkhatay, Fauzia MacManus‐Driscoll, Judith L. Wang, Haiyan Yarotski, Dmitry Chen, Jun Gao, Xingsun Martin, Lane W. Roelofs, Andreas Jia, Quanxi |
description | Memristors with excellent scalability have the potential to revolutionize not only the field of information storage but also neuromorphic computing. Conventional metal oxides are widely used as resistive switching materials in memristors. Interface‐type memristors based on ferroelectric materials are emerging as alternatives in the development of high‐performance memory devices. A clear understanding of the switching mechanisms in this type of memristors, however, is still in its early stages. By comparing the bipolar switching in different systems, it is found that the switchable diode effect in ferroelectric memristors is controlled by polarization modulated Schottky barrier height and polarization coupled interfacial deep states trapping/detrapping. Using semiconductor theories with consideration of polarization effects, a phenomenological theory is developed to explain the current–voltage behavior at the metal/ferroelectric interface. These findings reveal the critical role of the interaction among polarization charges, interfacial defects, and Schottky interface in controlling ferroelectric resistive switching and offer the guidance to design ferroelectric memristors with enhanced performance.
By considering polarization modulated Schottky barrier height and polarization coupled interfacial deep states trapping/de‐trapping, a phenomenological theory is developed to explain the current‐voltage hysteresis behavior at the metal/ferroelectric interface. This work demonstrates new strategies to enhance the resistive switching performance of ferroelectric memristors via defect and interface engineering. |
doi_str_mv | 10.1002/adfm.202000664 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1646546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2453663680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3844-ad885906b68bbc100b33d026dd470542cb5f79ea9ec4277d94b976dff46e060c3</originalsourceid><addsrcrecordid>eNqFkTFPwzAQhSMEEqWwMlswt1wSx0nGqlBAKgIJkNgsx75QlzQOtksVfj2uisrIdDd87907vSg6j2EcAyRXQtWrcQIJADBGD6JBzGI2SiEpDvd7_HYcnTi3BIjzPKWDqJ-addfo9t0RU5Mn0wirv4XXpiUb7RfkvvVoayG1aMg1YkderOiIaBV5lgvj_Ue_R5BMTeutaRpUZIbWGmxQeqslecCV1c7rLyTPwVYuwsHT6KgWjcOz3zmMXmc3L9O70fzx9n46mY9kWlA6EqooshJYxYqqkuHRKk0VJEwpmkNGE1lldV6iKFHSJM9VSasyZ6quKUNgINNhdLHzNSEAd1J7lAtp2jZk4zGjLKMsQJc7qLPmc43O86VZ2zbk4gnNUsZSVkCgxjtKWuOcxZp3Vq-E7XkMfNsB33bA9x0EQbkTbHSD_T80n1zPHv60PwL_jFc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453663680</pqid></control><display><type>article</type><title>Couplings of Polarization with Interfacial Deep Trap and Schottky Interface Controlled Ferroelectric Memristive Switching</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Aiping ; Zhang, Wenrui ; Dedon, Liv R. ; Chen, Di ; Khatkhatay, Fauzia ; MacManus‐Driscoll, Judith L. ; Wang, Haiyan ; Yarotski, Dmitry ; Chen, Jun ; Gao, Xingsun ; Martin, Lane W. ; Roelofs, Andreas ; Jia, Quanxi</creator><creatorcontrib>Chen, Aiping ; Zhang, Wenrui ; Dedon, Liv R. ; Chen, Di ; Khatkhatay, Fauzia ; MacManus‐Driscoll, Judith L. ; Wang, Haiyan ; Yarotski, Dmitry ; Chen, Jun ; Gao, Xingsun ; Martin, Lane W. ; Roelofs, Andreas ; Jia, Quanxi</creatorcontrib><description>Memristors with excellent scalability have the potential to revolutionize not only the field of information storage but also neuromorphic computing. Conventional metal oxides are widely used as resistive switching materials in memristors. Interface‐type memristors based on ferroelectric materials are emerging as alternatives in the development of high‐performance memory devices. A clear understanding of the switching mechanisms in this type of memristors, however, is still in its early stages. By comparing the bipolar switching in different systems, it is found that the switchable diode effect in ferroelectric memristors is controlled by polarization modulated Schottky barrier height and polarization coupled interfacial deep states trapping/detrapping. Using semiconductor theories with consideration of polarization effects, a phenomenological theory is developed to explain the current–voltage behavior at the metal/ferroelectric interface. These findings reveal the critical role of the interaction among polarization charges, interfacial defects, and Schottky interface in controlling ferroelectric resistive switching and offer the guidance to design ferroelectric memristors with enhanced performance.
By considering polarization modulated Schottky barrier height and polarization coupled interfacial deep states trapping/de‐trapping, a phenomenological theory is developed to explain the current‐voltage hysteresis behavior at the metal/ferroelectric interface. This work demonstrates new strategies to enhance the resistive switching performance of ferroelectric memristors via defect and interface engineering.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202000664</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Couplings ; Current voltage characteristics ; Data storage ; Ferroelectric materials ; Ferroelectricity ; ferroelectrics ; Information storage ; Materials science ; Memory devices ; memristive switching ; Memristors ; Metal oxides ; metal/oxide interfaces ; oxide thin films ; Performance enhancement ; Polarization ; semiconductors ; Switching</subject><ispartof>Advanced functional materials, 2020-10, Vol.30 (43), p.n/a</ispartof><rights>2020 The Authors. Published by Wiley‐VCH GmbH</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3844-ad885906b68bbc100b33d026dd470542cb5f79ea9ec4277d94b976dff46e060c3</citedby><cites>FETCH-LOGICAL-c3844-ad885906b68bbc100b33d026dd470542cb5f79ea9ec4277d94b976dff46e060c3</cites><orcidid>0000-0003-2639-2797 ; 0000000326392797</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202000664$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202000664$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1646546$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Aiping</creatorcontrib><creatorcontrib>Zhang, Wenrui</creatorcontrib><creatorcontrib>Dedon, Liv R.</creatorcontrib><creatorcontrib>Chen, Di</creatorcontrib><creatorcontrib>Khatkhatay, Fauzia</creatorcontrib><creatorcontrib>MacManus‐Driscoll, Judith L.</creatorcontrib><creatorcontrib>Wang, Haiyan</creatorcontrib><creatorcontrib>Yarotski, Dmitry</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Gao, Xingsun</creatorcontrib><creatorcontrib>Martin, Lane W.</creatorcontrib><creatorcontrib>Roelofs, Andreas</creatorcontrib><creatorcontrib>Jia, Quanxi</creatorcontrib><title>Couplings of Polarization with Interfacial Deep Trap and Schottky Interface Controlled Ferroelectric Memristive Switching</title><title>Advanced functional materials</title><description>Memristors with excellent scalability have the potential to revolutionize not only the field of information storage but also neuromorphic computing. Conventional metal oxides are widely used as resistive switching materials in memristors. Interface‐type memristors based on ferroelectric materials are emerging as alternatives in the development of high‐performance memory devices. A clear understanding of the switching mechanisms in this type of memristors, however, is still in its early stages. By comparing the bipolar switching in different systems, it is found that the switchable diode effect in ferroelectric memristors is controlled by polarization modulated Schottky barrier height and polarization coupled interfacial deep states trapping/detrapping. Using semiconductor theories with consideration of polarization effects, a phenomenological theory is developed to explain the current–voltage behavior at the metal/ferroelectric interface. These findings reveal the critical role of the interaction among polarization charges, interfacial defects, and Schottky interface in controlling ferroelectric resistive switching and offer the guidance to design ferroelectric memristors with enhanced performance.
By considering polarization modulated Schottky barrier height and polarization coupled interfacial deep states trapping/de‐trapping, a phenomenological theory is developed to explain the current‐voltage hysteresis behavior at the metal/ferroelectric interface. This work demonstrates new strategies to enhance the resistive switching performance of ferroelectric memristors via defect and interface engineering.</description><subject>Couplings</subject><subject>Current voltage characteristics</subject><subject>Data storage</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>ferroelectrics</subject><subject>Information storage</subject><subject>Materials science</subject><subject>Memory devices</subject><subject>memristive switching</subject><subject>Memristors</subject><subject>Metal oxides</subject><subject>metal/oxide interfaces</subject><subject>oxide thin films</subject><subject>Performance enhancement</subject><subject>Polarization</subject><subject>semiconductors</subject><subject>Switching</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkTFPwzAQhSMEEqWwMlswt1wSx0nGqlBAKgIJkNgsx75QlzQOtksVfj2uisrIdDd87907vSg6j2EcAyRXQtWrcQIJADBGD6JBzGI2SiEpDvd7_HYcnTi3BIjzPKWDqJ-addfo9t0RU5Mn0wirv4XXpiUb7RfkvvVoayG1aMg1YkderOiIaBV5lgvj_Ue_R5BMTeutaRpUZIbWGmxQeqslecCV1c7rLyTPwVYuwsHT6KgWjcOz3zmMXmc3L9O70fzx9n46mY9kWlA6EqooshJYxYqqkuHRKk0VJEwpmkNGE1lldV6iKFHSJM9VSasyZ6quKUNgINNhdLHzNSEAd1J7lAtp2jZk4zGjLKMsQJc7qLPmc43O86VZ2zbk4gnNUsZSVkCgxjtKWuOcxZp3Vq-E7XkMfNsB33bA9x0EQbkTbHSD_T80n1zPHv60PwL_jFc</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Chen, Aiping</creator><creator>Zhang, Wenrui</creator><creator>Dedon, Liv R.</creator><creator>Chen, Di</creator><creator>Khatkhatay, Fauzia</creator><creator>MacManus‐Driscoll, Judith L.</creator><creator>Wang, Haiyan</creator><creator>Yarotski, Dmitry</creator><creator>Chen, Jun</creator><creator>Gao, Xingsun</creator><creator>Martin, Lane W.</creator><creator>Roelofs, Andreas</creator><creator>Jia, Quanxi</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley & Sons)</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2639-2797</orcidid><orcidid>https://orcid.org/0000000326392797</orcidid></search><sort><creationdate>20201001</creationdate><title>Couplings of Polarization with Interfacial Deep Trap and Schottky Interface Controlled Ferroelectric Memristive Switching</title><author>Chen, Aiping ; Zhang, Wenrui ; Dedon, Liv R. ; Chen, Di ; Khatkhatay, Fauzia ; MacManus‐Driscoll, Judith L. ; Wang, Haiyan ; Yarotski, Dmitry ; Chen, Jun ; Gao, Xingsun ; Martin, Lane W. ; Roelofs, Andreas ; Jia, Quanxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3844-ad885906b68bbc100b33d026dd470542cb5f79ea9ec4277d94b976dff46e060c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Couplings</topic><topic>Current voltage characteristics</topic><topic>Data storage</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>ferroelectrics</topic><topic>Information storage</topic><topic>Materials science</topic><topic>Memory devices</topic><topic>memristive switching</topic><topic>Memristors</topic><topic>Metal oxides</topic><topic>metal/oxide interfaces</topic><topic>oxide thin films</topic><topic>Performance enhancement</topic><topic>Polarization</topic><topic>semiconductors</topic><topic>Switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Aiping</creatorcontrib><creatorcontrib>Zhang, Wenrui</creatorcontrib><creatorcontrib>Dedon, Liv R.</creatorcontrib><creatorcontrib>Chen, Di</creatorcontrib><creatorcontrib>Khatkhatay, Fauzia</creatorcontrib><creatorcontrib>MacManus‐Driscoll, Judith L.</creatorcontrib><creatorcontrib>Wang, Haiyan</creatorcontrib><creatorcontrib>Yarotski, Dmitry</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Gao, Xingsun</creatorcontrib><creatorcontrib>Martin, Lane W.</creatorcontrib><creatorcontrib>Roelofs, Andreas</creatorcontrib><creatorcontrib>Jia, Quanxi</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Aiping</au><au>Zhang, Wenrui</au><au>Dedon, Liv R.</au><au>Chen, Di</au><au>Khatkhatay, Fauzia</au><au>MacManus‐Driscoll, Judith L.</au><au>Wang, Haiyan</au><au>Yarotski, Dmitry</au><au>Chen, Jun</au><au>Gao, Xingsun</au><au>Martin, Lane W.</au><au>Roelofs, Andreas</au><au>Jia, Quanxi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Couplings of Polarization with Interfacial Deep Trap and Schottky Interface Controlled Ferroelectric Memristive Switching</atitle><jtitle>Advanced functional materials</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>30</volume><issue>43</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Memristors with excellent scalability have the potential to revolutionize not only the field of information storage but also neuromorphic computing. Conventional metal oxides are widely used as resistive switching materials in memristors. Interface‐type memristors based on ferroelectric materials are emerging as alternatives in the development of high‐performance memory devices. A clear understanding of the switching mechanisms in this type of memristors, however, is still in its early stages. By comparing the bipolar switching in different systems, it is found that the switchable diode effect in ferroelectric memristors is controlled by polarization modulated Schottky barrier height and polarization coupled interfacial deep states trapping/detrapping. Using semiconductor theories with consideration of polarization effects, a phenomenological theory is developed to explain the current–voltage behavior at the metal/ferroelectric interface. These findings reveal the critical role of the interaction among polarization charges, interfacial defects, and Schottky interface in controlling ferroelectric resistive switching and offer the guidance to design ferroelectric memristors with enhanced performance.
By considering polarization modulated Schottky barrier height and polarization coupled interfacial deep states trapping/de‐trapping, a phenomenological theory is developed to explain the current‐voltage hysteresis behavior at the metal/ferroelectric interface. This work demonstrates new strategies to enhance the resistive switching performance of ferroelectric memristors via defect and interface engineering.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202000664</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2639-2797</orcidid><orcidid>https://orcid.org/0000000326392797</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-10, Vol.30 (43), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_osti_scitechconnect_1646546 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Couplings Current voltage characteristics Data storage Ferroelectric materials Ferroelectricity ferroelectrics Information storage Materials science Memory devices memristive switching Memristors Metal oxides metal/oxide interfaces oxide thin films Performance enhancement Polarization semiconductors Switching |
title | Couplings of Polarization with Interfacial Deep Trap and Schottky Interface Controlled Ferroelectric Memristive Switching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T00%3A45%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Couplings%20of%20Polarization%20with%20Interfacial%20Deep%20Trap%20and%20Schottky%20Interface%20Controlled%20Ferroelectric%20Memristive%20Switching&rft.jtitle=Advanced%20functional%20materials&rft.au=Chen,%20Aiping&rft.date=2020-10-01&rft.volume=30&rft.issue=43&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202000664&rft_dat=%3Cproquest_osti_%3E2453663680%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453663680&rft_id=info:pmid/&rfr_iscdi=true |