Couplings of Polarization with Interfacial Deep Trap and Schottky Interface Controlled Ferroelectric Memristive Switching

Memristors with excellent scalability have the potential to revolutionize not only the field of information storage but also neuromorphic computing. Conventional metal oxides are widely used as resistive switching materials in memristors. Interface‐type memristors based on ferroelectric materials ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-10, Vol.30 (43), p.n/a
Hauptverfasser: Chen, Aiping, Zhang, Wenrui, Dedon, Liv R., Chen, Di, Khatkhatay, Fauzia, MacManus‐Driscoll, Judith L., Wang, Haiyan, Yarotski, Dmitry, Chen, Jun, Gao, Xingsun, Martin, Lane W., Roelofs, Andreas, Jia, Quanxi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 43
container_start_page
container_title Advanced functional materials
container_volume 30
creator Chen, Aiping
Zhang, Wenrui
Dedon, Liv R.
Chen, Di
Khatkhatay, Fauzia
MacManus‐Driscoll, Judith L.
Wang, Haiyan
Yarotski, Dmitry
Chen, Jun
Gao, Xingsun
Martin, Lane W.
Roelofs, Andreas
Jia, Quanxi
description Memristors with excellent scalability have the potential to revolutionize not only the field of information storage but also neuromorphic computing. Conventional metal oxides are widely used as resistive switching materials in memristors. Interface‐type memristors based on ferroelectric materials are emerging as alternatives in the development of high‐performance memory devices. A clear understanding of the switching mechanisms in this type of memristors, however, is still in its early stages. By comparing the bipolar switching in different systems, it is found that the switchable diode effect in ferroelectric memristors is controlled by polarization modulated Schottky barrier height and polarization coupled interfacial deep states trapping/detrapping. Using semiconductor theories with consideration of polarization effects, a phenomenological theory is developed to explain the current–voltage behavior at the metal/ferroelectric interface. These findings reveal the critical role of the interaction among polarization charges, interfacial defects, and Schottky interface in controlling ferroelectric resistive switching and offer the guidance to design ferroelectric memristors with enhanced performance. By considering polarization modulated Schottky barrier height and polarization coupled interfacial deep states trapping/de‐trapping, a phenomenological theory is developed to explain the current‐voltage hysteresis behavior at the metal/ferroelectric interface. This work demonstrates new strategies to enhance the resistive switching performance of ferroelectric memristors via defect and interface engineering.
doi_str_mv 10.1002/adfm.202000664
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1646546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2453663680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3844-ad885906b68bbc100b33d026dd470542cb5f79ea9ec4277d94b976dff46e060c3</originalsourceid><addsrcrecordid>eNqFkTFPwzAQhSMEEqWwMlswt1wSx0nGqlBAKgIJkNgsx75QlzQOtksVfj2uisrIdDd87907vSg6j2EcAyRXQtWrcQIJADBGD6JBzGI2SiEpDvd7_HYcnTi3BIjzPKWDqJ-addfo9t0RU5Mn0wirv4XXpiUb7RfkvvVoayG1aMg1YkderOiIaBV5lgvj_Ue_R5BMTeutaRpUZIbWGmxQeqslecCV1c7rLyTPwVYuwsHT6KgWjcOz3zmMXmc3L9O70fzx9n46mY9kWlA6EqooshJYxYqqkuHRKk0VJEwpmkNGE1lldV6iKFHSJM9VSasyZ6quKUNgINNhdLHzNSEAd1J7lAtp2jZk4zGjLKMsQJc7qLPmc43O86VZ2zbk4gnNUsZSVkCgxjtKWuOcxZp3Vq-E7XkMfNsB33bA9x0EQbkTbHSD_T80n1zPHv60PwL_jFc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453663680</pqid></control><display><type>article</type><title>Couplings of Polarization with Interfacial Deep Trap and Schottky Interface Controlled Ferroelectric Memristive Switching</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Aiping ; Zhang, Wenrui ; Dedon, Liv R. ; Chen, Di ; Khatkhatay, Fauzia ; MacManus‐Driscoll, Judith L. ; Wang, Haiyan ; Yarotski, Dmitry ; Chen, Jun ; Gao, Xingsun ; Martin, Lane W. ; Roelofs, Andreas ; Jia, Quanxi</creator><creatorcontrib>Chen, Aiping ; Zhang, Wenrui ; Dedon, Liv R. ; Chen, Di ; Khatkhatay, Fauzia ; MacManus‐Driscoll, Judith L. ; Wang, Haiyan ; Yarotski, Dmitry ; Chen, Jun ; Gao, Xingsun ; Martin, Lane W. ; Roelofs, Andreas ; Jia, Quanxi</creatorcontrib><description>Memristors with excellent scalability have the potential to revolutionize not only the field of information storage but also neuromorphic computing. Conventional metal oxides are widely used as resistive switching materials in memristors. Interface‐type memristors based on ferroelectric materials are emerging as alternatives in the development of high‐performance memory devices. A clear understanding of the switching mechanisms in this type of memristors, however, is still in its early stages. By comparing the bipolar switching in different systems, it is found that the switchable diode effect in ferroelectric memristors is controlled by polarization modulated Schottky barrier height and polarization coupled interfacial deep states trapping/detrapping. Using semiconductor theories with consideration of polarization effects, a phenomenological theory is developed to explain the current–voltage behavior at the metal/ferroelectric interface. These findings reveal the critical role of the interaction among polarization charges, interfacial defects, and Schottky interface in controlling ferroelectric resistive switching and offer the guidance to design ferroelectric memristors with enhanced performance. By considering polarization modulated Schottky barrier height and polarization coupled interfacial deep states trapping/de‐trapping, a phenomenological theory is developed to explain the current‐voltage hysteresis behavior at the metal/ferroelectric interface. This work demonstrates new strategies to enhance the resistive switching performance of ferroelectric memristors via defect and interface engineering.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202000664</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Couplings ; Current voltage characteristics ; Data storage ; Ferroelectric materials ; Ferroelectricity ; ferroelectrics ; Information storage ; Materials science ; Memory devices ; memristive switching ; Memristors ; Metal oxides ; metal/oxide interfaces ; oxide thin films ; Performance enhancement ; Polarization ; semiconductors ; Switching</subject><ispartof>Advanced functional materials, 2020-10, Vol.30 (43), p.n/a</ispartof><rights>2020 The Authors. Published by Wiley‐VCH GmbH</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3844-ad885906b68bbc100b33d026dd470542cb5f79ea9ec4277d94b976dff46e060c3</citedby><cites>FETCH-LOGICAL-c3844-ad885906b68bbc100b33d026dd470542cb5f79ea9ec4277d94b976dff46e060c3</cites><orcidid>0000-0003-2639-2797 ; 0000000326392797</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202000664$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202000664$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1646546$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Aiping</creatorcontrib><creatorcontrib>Zhang, Wenrui</creatorcontrib><creatorcontrib>Dedon, Liv R.</creatorcontrib><creatorcontrib>Chen, Di</creatorcontrib><creatorcontrib>Khatkhatay, Fauzia</creatorcontrib><creatorcontrib>MacManus‐Driscoll, Judith L.</creatorcontrib><creatorcontrib>Wang, Haiyan</creatorcontrib><creatorcontrib>Yarotski, Dmitry</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Gao, Xingsun</creatorcontrib><creatorcontrib>Martin, Lane W.</creatorcontrib><creatorcontrib>Roelofs, Andreas</creatorcontrib><creatorcontrib>Jia, Quanxi</creatorcontrib><title>Couplings of Polarization with Interfacial Deep Trap and Schottky Interface Controlled Ferroelectric Memristive Switching</title><title>Advanced functional materials</title><description>Memristors with excellent scalability have the potential to revolutionize not only the field of information storage but also neuromorphic computing. Conventional metal oxides are widely used as resistive switching materials in memristors. Interface‐type memristors based on ferroelectric materials are emerging as alternatives in the development of high‐performance memory devices. A clear understanding of the switching mechanisms in this type of memristors, however, is still in its early stages. By comparing the bipolar switching in different systems, it is found that the switchable diode effect in ferroelectric memristors is controlled by polarization modulated Schottky barrier height and polarization coupled interfacial deep states trapping/detrapping. Using semiconductor theories with consideration of polarization effects, a phenomenological theory is developed to explain the current–voltage behavior at the metal/ferroelectric interface. These findings reveal the critical role of the interaction among polarization charges, interfacial defects, and Schottky interface in controlling ferroelectric resistive switching and offer the guidance to design ferroelectric memristors with enhanced performance. By considering polarization modulated Schottky barrier height and polarization coupled interfacial deep states trapping/de‐trapping, a phenomenological theory is developed to explain the current‐voltage hysteresis behavior at the metal/ferroelectric interface. This work demonstrates new strategies to enhance the resistive switching performance of ferroelectric memristors via defect and interface engineering.</description><subject>Couplings</subject><subject>Current voltage characteristics</subject><subject>Data storage</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>ferroelectrics</subject><subject>Information storage</subject><subject>Materials science</subject><subject>Memory devices</subject><subject>memristive switching</subject><subject>Memristors</subject><subject>Metal oxides</subject><subject>metal/oxide interfaces</subject><subject>oxide thin films</subject><subject>Performance enhancement</subject><subject>Polarization</subject><subject>semiconductors</subject><subject>Switching</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkTFPwzAQhSMEEqWwMlswt1wSx0nGqlBAKgIJkNgsx75QlzQOtksVfj2uisrIdDd87907vSg6j2EcAyRXQtWrcQIJADBGD6JBzGI2SiEpDvd7_HYcnTi3BIjzPKWDqJ-addfo9t0RU5Mn0wirv4XXpiUb7RfkvvVoayG1aMg1YkderOiIaBV5lgvj_Ue_R5BMTeutaRpUZIbWGmxQeqslecCV1c7rLyTPwVYuwsHT6KgWjcOz3zmMXmc3L9O70fzx9n46mY9kWlA6EqooshJYxYqqkuHRKk0VJEwpmkNGE1lldV6iKFHSJM9VSasyZ6quKUNgINNhdLHzNSEAd1J7lAtp2jZk4zGjLKMsQJc7qLPmc43O86VZ2zbk4gnNUsZSVkCgxjtKWuOcxZp3Vq-E7XkMfNsB33bA9x0EQbkTbHSD_T80n1zPHv60PwL_jFc</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Chen, Aiping</creator><creator>Zhang, Wenrui</creator><creator>Dedon, Liv R.</creator><creator>Chen, Di</creator><creator>Khatkhatay, Fauzia</creator><creator>MacManus‐Driscoll, Judith L.</creator><creator>Wang, Haiyan</creator><creator>Yarotski, Dmitry</creator><creator>Chen, Jun</creator><creator>Gao, Xingsun</creator><creator>Martin, Lane W.</creator><creator>Roelofs, Andreas</creator><creator>Jia, Quanxi</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2639-2797</orcidid><orcidid>https://orcid.org/0000000326392797</orcidid></search><sort><creationdate>20201001</creationdate><title>Couplings of Polarization with Interfacial Deep Trap and Schottky Interface Controlled Ferroelectric Memristive Switching</title><author>Chen, Aiping ; Zhang, Wenrui ; Dedon, Liv R. ; Chen, Di ; Khatkhatay, Fauzia ; MacManus‐Driscoll, Judith L. ; Wang, Haiyan ; Yarotski, Dmitry ; Chen, Jun ; Gao, Xingsun ; Martin, Lane W. ; Roelofs, Andreas ; Jia, Quanxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3844-ad885906b68bbc100b33d026dd470542cb5f79ea9ec4277d94b976dff46e060c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Couplings</topic><topic>Current voltage characteristics</topic><topic>Data storage</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>ferroelectrics</topic><topic>Information storage</topic><topic>Materials science</topic><topic>Memory devices</topic><topic>memristive switching</topic><topic>Memristors</topic><topic>Metal oxides</topic><topic>metal/oxide interfaces</topic><topic>oxide thin films</topic><topic>Performance enhancement</topic><topic>Polarization</topic><topic>semiconductors</topic><topic>Switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Aiping</creatorcontrib><creatorcontrib>Zhang, Wenrui</creatorcontrib><creatorcontrib>Dedon, Liv R.</creatorcontrib><creatorcontrib>Chen, Di</creatorcontrib><creatorcontrib>Khatkhatay, Fauzia</creatorcontrib><creatorcontrib>MacManus‐Driscoll, Judith L.</creatorcontrib><creatorcontrib>Wang, Haiyan</creatorcontrib><creatorcontrib>Yarotski, Dmitry</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Gao, Xingsun</creatorcontrib><creatorcontrib>Martin, Lane W.</creatorcontrib><creatorcontrib>Roelofs, Andreas</creatorcontrib><creatorcontrib>Jia, Quanxi</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Aiping</au><au>Zhang, Wenrui</au><au>Dedon, Liv R.</au><au>Chen, Di</au><au>Khatkhatay, Fauzia</au><au>MacManus‐Driscoll, Judith L.</au><au>Wang, Haiyan</au><au>Yarotski, Dmitry</au><au>Chen, Jun</au><au>Gao, Xingsun</au><au>Martin, Lane W.</au><au>Roelofs, Andreas</au><au>Jia, Quanxi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Couplings of Polarization with Interfacial Deep Trap and Schottky Interface Controlled Ferroelectric Memristive Switching</atitle><jtitle>Advanced functional materials</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>30</volume><issue>43</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Memristors with excellent scalability have the potential to revolutionize not only the field of information storage but also neuromorphic computing. Conventional metal oxides are widely used as resistive switching materials in memristors. Interface‐type memristors based on ferroelectric materials are emerging as alternatives in the development of high‐performance memory devices. A clear understanding of the switching mechanisms in this type of memristors, however, is still in its early stages. By comparing the bipolar switching in different systems, it is found that the switchable diode effect in ferroelectric memristors is controlled by polarization modulated Schottky barrier height and polarization coupled interfacial deep states trapping/detrapping. Using semiconductor theories with consideration of polarization effects, a phenomenological theory is developed to explain the current–voltage behavior at the metal/ferroelectric interface. These findings reveal the critical role of the interaction among polarization charges, interfacial defects, and Schottky interface in controlling ferroelectric resistive switching and offer the guidance to design ferroelectric memristors with enhanced performance. By considering polarization modulated Schottky barrier height and polarization coupled interfacial deep states trapping/de‐trapping, a phenomenological theory is developed to explain the current‐voltage hysteresis behavior at the metal/ferroelectric interface. This work demonstrates new strategies to enhance the resistive switching performance of ferroelectric memristors via defect and interface engineering.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202000664</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2639-2797</orcidid><orcidid>https://orcid.org/0000000326392797</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-10, Vol.30 (43), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_osti_scitechconnect_1646546
source Wiley Online Library Journals Frontfile Complete
subjects Couplings
Current voltage characteristics
Data storage
Ferroelectric materials
Ferroelectricity
ferroelectrics
Information storage
Materials science
Memory devices
memristive switching
Memristors
Metal oxides
metal/oxide interfaces
oxide thin films
Performance enhancement
Polarization
semiconductors
Switching
title Couplings of Polarization with Interfacial Deep Trap and Schottky Interface Controlled Ferroelectric Memristive Switching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T00%3A45%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Couplings%20of%20Polarization%20with%20Interfacial%20Deep%20Trap%20and%20Schottky%20Interface%20Controlled%20Ferroelectric%20Memristive%20Switching&rft.jtitle=Advanced%20functional%20materials&rft.au=Chen,%20Aiping&rft.date=2020-10-01&rft.volume=30&rft.issue=43&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202000664&rft_dat=%3Cproquest_osti_%3E2453663680%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453663680&rft_id=info:pmid/&rfr_iscdi=true