CFD study of non-premixed swirling burners: Effect of turbulence models
This research investigates a numerical simulation of swirling turbulent non-premixed combustion. The effects on the combustion characteristics are examined with three turbulence models: namely as the Reynolds stress model, spectral turbulence analysis and Re-Normalization Group. In addition, the P-1...
Gespeichert in:
Veröffentlicht in: | Chinese journal of chemical engineering 2020-04, Vol.28 (4), p.1029-1038 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1038 |
---|---|
container_issue | 4 |
container_start_page | 1029 |
container_title | Chinese journal of chemical engineering |
container_volume | 28 |
creator | Khodabandeh, Erfan Moghadasi, Hesam Saffari Pour, Mohsen Ersson, Mikael Jönsson, Pär G. Rosen, Marc A. Rahbari, Alireza |
description | This research investigates a numerical simulation of swirling turbulent non-premixed combustion. The effects on the combustion characteristics are examined with three turbulence models: namely as the Reynolds stress model, spectral turbulence analysis and Re-Normalization Group. In addition, the P-1 and discrete ordinate (DO) models are used to simulate the radiative heat transfer in this model. The governing equations associated with the required boundary conditions are solved using the numerical model. The accuracy of this model is validated with the published experimental data and the comparison elucidates that there is a reasonable agreement between the obtained values from this model and the corresponding experimental quantities. Among different models proposed in this research, the Reynolds stress model with the Probability Density Function (PDF) approach is more accurate (nearly up to 50%) than other turbulent models for a swirling flow field. Regarding the effect of radiative heat transfer model, it is observed that the discrete ordinate model is more precise than the P-1 model in anticipating the experimental behavior. This model is able to simulate the subcritical nature of the isothermal flow as well as the size and shape of the internal recirculation induced by the swirl due to combustion.
[Display omitted]
•A PDF approach is used to predict the turbulent non-premixed combustion.•Three turbulent models (RSM, STA and RNG) are employed for modeling the swirling flows.•P-1 and DO models are implemented for the simulation of the radiative heat transfer.•The use of the RSM and DO models to predict turbulence and radiative heat transfer, respectively, show better accuracy.•Increasing the swirl number augments the turbulence intensity and fluid recirculation. |
doi_str_mv | 10.1016/j.cjche.2020.02.016 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_webof</sourceid><recordid>TN_cdi_webofscience_primary_000555483300009CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>cjce202004009</wanfj_id><els_id>S1004954120300811</els_id><sourcerecordid>cjce202004009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-546f048b4ee2e979ed5c136b1e423b40866f203d478ea72c3876c0e9d69bb7463</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVJoZu0v6AXX3oKdkcf_ir0EJxPCOTSlt6EJY82cnelRbK7zb-vnF1yDDlJDM87mnlEyGcKBQVafR0LPepHLBgwKIAVqfaOrBijkHNGf5-QFQUQeVsK-oGcxjhCAhvarMhNd32ZxWkenjJvMuddvgu4tf9wyOLeho1160zNwWGI37IrY1BPCzjNQc0bdBqzrR9wEz-S96bfRPx0PM_Iz-urH91tfv9wc9dd3Oea13TKS1EZEI0SiAzbusWh1JRXiqJgXAloqsow4IOoG-xrpnlTVxqwHapWqVpU_Izkh75xj7tZyV2w2z48Sd9beWl_XUgf1vLP9ChZLYCXif9y4Pe9M71by9GnbdKEMhnDxRcIgDZx_MDp4GMMaF46U5CLYznKZ8dyyUhgMtVS6vzYHZU3UdvFyEsSAMqyFA3n6fb8RvN2urNTP1nvOj-7KUW_H6JJNf61GOQxPtiQvkQO3r466H9NJ6VW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CFD study of non-premixed swirling burners: Effect of turbulence models</title><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Access via ScienceDirect (Elsevier)</source><source>Alma/SFX Local Collection</source><creator>Khodabandeh, Erfan ; Moghadasi, Hesam ; Saffari Pour, Mohsen ; Ersson, Mikael ; Jönsson, Pär G. ; Rosen, Marc A. ; Rahbari, Alireza</creator><creatorcontrib>Khodabandeh, Erfan ; Moghadasi, Hesam ; Saffari Pour, Mohsen ; Ersson, Mikael ; Jönsson, Pär G. ; Rosen, Marc A. ; Rahbari, Alireza</creatorcontrib><description>This research investigates a numerical simulation of swirling turbulent non-premixed combustion. The effects on the combustion characteristics are examined with three turbulence models: namely as the Reynolds stress model, spectral turbulence analysis and Re-Normalization Group. In addition, the P-1 and discrete ordinate (DO) models are used to simulate the radiative heat transfer in this model. The governing equations associated with the required boundary conditions are solved using the numerical model. The accuracy of this model is validated with the published experimental data and the comparison elucidates that there is a reasonable agreement between the obtained values from this model and the corresponding experimental quantities. Among different models proposed in this research, the Reynolds stress model with the Probability Density Function (PDF) approach is more accurate (nearly up to 50%) than other turbulent models for a swirling flow field. Regarding the effect of radiative heat transfer model, it is observed that the discrete ordinate model is more precise than the P-1 model in anticipating the experimental behavior. This model is able to simulate the subcritical nature of the isothermal flow as well as the size and shape of the internal recirculation induced by the swirl due to combustion.
[Display omitted]
•A PDF approach is used to predict the turbulent non-premixed combustion.•Three turbulent models (RSM, STA and RNG) are employed for modeling the swirling flows.•P-1 and DO models are implemented for the simulation of the radiative heat transfer.•The use of the RSM and DO models to predict turbulence and radiative heat transfer, respectively, show better accuracy.•Increasing the swirl number augments the turbulence intensity and fluid recirculation.</description><identifier>ISSN: 1004-9541</identifier><identifier>ISSN: 2210-321X</identifier><identifier>EISSN: 2210-321X</identifier><identifier>DOI: 10.1016/j.cjche.2020.02.016</identifier><language>eng</language><publisher>BEIJING: Elsevier B.V</publisher><subject>Computational Fluid Dynamics (CFD) ; Engineering ; Engineering, Chemical ; Large eddy simulations ; Modeling validation ; Non-premixed flames ; Radiative heat transfer model ; Science & Technology ; Technology ; Turbulent combustion</subject><ispartof>Chinese journal of chemical engineering, 2020-04, Vol.28 (4), p.1029-1038</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>21</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000555483300009</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c371t-546f048b4ee2e979ed5c136b1e423b40866f203d478ea72c3876c0e9d69bb7463</citedby><cites>FETCH-LOGICAL-c371t-546f048b4ee2e979ed5c136b1e423b40866f203d478ea72c3876c0e9d69bb7463</cites><orcidid>0000-0003-4384-7984 ; 0000-0001-6363-739X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/cjce/cjce.jpg</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cjche.2020.02.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,782,786,887,3552,27931,27932,28255,46002</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-274035$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Khodabandeh, Erfan</creatorcontrib><creatorcontrib>Moghadasi, Hesam</creatorcontrib><creatorcontrib>Saffari Pour, Mohsen</creatorcontrib><creatorcontrib>Ersson, Mikael</creatorcontrib><creatorcontrib>Jönsson, Pär G.</creatorcontrib><creatorcontrib>Rosen, Marc A.</creatorcontrib><creatorcontrib>Rahbari, Alireza</creatorcontrib><title>CFD study of non-premixed swirling burners: Effect of turbulence models</title><title>Chinese journal of chemical engineering</title><addtitle>CHINESE J CHEM ENG</addtitle><description>This research investigates a numerical simulation of swirling turbulent non-premixed combustion. The effects on the combustion characteristics are examined with three turbulence models: namely as the Reynolds stress model, spectral turbulence analysis and Re-Normalization Group. In addition, the P-1 and discrete ordinate (DO) models are used to simulate the radiative heat transfer in this model. The governing equations associated with the required boundary conditions are solved using the numerical model. The accuracy of this model is validated with the published experimental data and the comparison elucidates that there is a reasonable agreement between the obtained values from this model and the corresponding experimental quantities. Among different models proposed in this research, the Reynolds stress model with the Probability Density Function (PDF) approach is more accurate (nearly up to 50%) than other turbulent models for a swirling flow field. Regarding the effect of radiative heat transfer model, it is observed that the discrete ordinate model is more precise than the P-1 model in anticipating the experimental behavior. This model is able to simulate the subcritical nature of the isothermal flow as well as the size and shape of the internal recirculation induced by the swirl due to combustion.
[Display omitted]
•A PDF approach is used to predict the turbulent non-premixed combustion.•Three turbulent models (RSM, STA and RNG) are employed for modeling the swirling flows.•P-1 and DO models are implemented for the simulation of the radiative heat transfer.•The use of the RSM and DO models to predict turbulence and radiative heat transfer, respectively, show better accuracy.•Increasing the swirl number augments the turbulence intensity and fluid recirculation.</description><subject>Computational Fluid Dynamics (CFD)</subject><subject>Engineering</subject><subject>Engineering, Chemical</subject><subject>Large eddy simulations</subject><subject>Modeling validation</subject><subject>Non-premixed flames</subject><subject>Radiative heat transfer model</subject><subject>Science & Technology</subject><subject>Technology</subject><subject>Turbulent combustion</subject><issn>1004-9541</issn><issn>2210-321X</issn><issn>2210-321X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkU1r3DAQhkVJoZu0v6AXX3oKdkcf_ir0EJxPCOTSlt6EJY82cnelRbK7zb-vnF1yDDlJDM87mnlEyGcKBQVafR0LPepHLBgwKIAVqfaOrBijkHNGf5-QFQUQeVsK-oGcxjhCAhvarMhNd32ZxWkenjJvMuddvgu4tf9wyOLeho1160zNwWGI37IrY1BPCzjNQc0bdBqzrR9wEz-S96bfRPx0PM_Iz-urH91tfv9wc9dd3Oea13TKS1EZEI0SiAzbusWh1JRXiqJgXAloqsow4IOoG-xrpnlTVxqwHapWqVpU_Izkh75xj7tZyV2w2z48Sd9beWl_XUgf1vLP9ChZLYCXif9y4Pe9M71by9GnbdKEMhnDxRcIgDZx_MDp4GMMaF46U5CLYznKZ8dyyUhgMtVS6vzYHZU3UdvFyEsSAMqyFA3n6fb8RvN2urNTP1nvOj-7KUW_H6JJNf61GOQxPtiQvkQO3r466H9NJ6VW</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Khodabandeh, Erfan</creator><creator>Moghadasi, Hesam</creator><creator>Saffari Pour, Mohsen</creator><creator>Ersson, Mikael</creator><creator>Jönsson, Pär G.</creator><creator>Rosen, Marc A.</creator><creator>Rahbari, Alireza</creator><general>Elsevier B.V</general><general>Chemical Industry Press Co Ltd</general><general>Research School of Engineering, The Australian National University, Canberra, ACT 2601, Australia</general><general>Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran%School of Mechanical Engineering, Department of Energy Conversion, Iran University of Sciesnce and Technology (IUST), Narmak 16846-13114, Tehran, Iran%Department of Mechanical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran</general><general>Division of Processes, Department of Materials Science and Engineering, KTH Royal Institute of Technology, Brinellv?gen 23, SE-10044 Stockholm, Sweden%Division of Processes, Department of Materials Science and Engineering, KTH Royal Institute of Technology, Brinellv?gen 23, SE-10044 Stockholm, Sweden%Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario, L1H 7K4, Canada%Department of Mechanical Engineering, Shahid Rajaee Teacher Training University (SRTTU), Tehran, Iran</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><orcidid>https://orcid.org/0000-0003-4384-7984</orcidid><orcidid>https://orcid.org/0000-0001-6363-739X</orcidid></search><sort><creationdate>20200401</creationdate><title>CFD study of non-premixed swirling burners: Effect of turbulence models</title><author>Khodabandeh, Erfan ; Moghadasi, Hesam ; Saffari Pour, Mohsen ; Ersson, Mikael ; Jönsson, Pär G. ; Rosen, Marc A. ; Rahbari, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-546f048b4ee2e979ed5c136b1e423b40866f203d478ea72c3876c0e9d69bb7463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational Fluid Dynamics (CFD)</topic><topic>Engineering</topic><topic>Engineering, Chemical</topic><topic>Large eddy simulations</topic><topic>Modeling validation</topic><topic>Non-premixed flames</topic><topic>Radiative heat transfer model</topic><topic>Science & Technology</topic><topic>Technology</topic><topic>Turbulent combustion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khodabandeh, Erfan</creatorcontrib><creatorcontrib>Moghadasi, Hesam</creatorcontrib><creatorcontrib>Saffari Pour, Mohsen</creatorcontrib><creatorcontrib>Ersson, Mikael</creatorcontrib><creatorcontrib>Jönsson, Pär G.</creatorcontrib><creatorcontrib>Rosen, Marc A.</creatorcontrib><creatorcontrib>Rahbari, Alireza</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>Chinese journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khodabandeh, Erfan</au><au>Moghadasi, Hesam</au><au>Saffari Pour, Mohsen</au><au>Ersson, Mikael</au><au>Jönsson, Pär G.</au><au>Rosen, Marc A.</au><au>Rahbari, Alireza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFD study of non-premixed swirling burners: Effect of turbulence models</atitle><jtitle>Chinese journal of chemical engineering</jtitle><stitle>CHINESE J CHEM ENG</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>28</volume><issue>4</issue><spage>1029</spage><epage>1038</epage><pages>1029-1038</pages><issn>1004-9541</issn><issn>2210-321X</issn><eissn>2210-321X</eissn><abstract>This research investigates a numerical simulation of swirling turbulent non-premixed combustion. The effects on the combustion characteristics are examined with three turbulence models: namely as the Reynolds stress model, spectral turbulence analysis and Re-Normalization Group. In addition, the P-1 and discrete ordinate (DO) models are used to simulate the radiative heat transfer in this model. The governing equations associated with the required boundary conditions are solved using the numerical model. The accuracy of this model is validated with the published experimental data and the comparison elucidates that there is a reasonable agreement between the obtained values from this model and the corresponding experimental quantities. Among different models proposed in this research, the Reynolds stress model with the Probability Density Function (PDF) approach is more accurate (nearly up to 50%) than other turbulent models for a swirling flow field. Regarding the effect of radiative heat transfer model, it is observed that the discrete ordinate model is more precise than the P-1 model in anticipating the experimental behavior. This model is able to simulate the subcritical nature of the isothermal flow as well as the size and shape of the internal recirculation induced by the swirl due to combustion.
[Display omitted]
•A PDF approach is used to predict the turbulent non-premixed combustion.•Three turbulent models (RSM, STA and RNG) are employed for modeling the swirling flows.•P-1 and DO models are implemented for the simulation of the radiative heat transfer.•The use of the RSM and DO models to predict turbulence and radiative heat transfer, respectively, show better accuracy.•Increasing the swirl number augments the turbulence intensity and fluid recirculation.</abstract><cop>BEIJING</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cjche.2020.02.016</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4384-7984</orcidid><orcidid>https://orcid.org/0000-0001-6363-739X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1004-9541 |
ispartof | Chinese journal of chemical engineering, 2020-04, Vol.28 (4), p.1029-1038 |
issn | 1004-9541 2210-321X 2210-321X |
language | eng |
recordid | cdi_webofscience_primary_000555483300009CitationCount |
source | Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier); Alma/SFX Local Collection |
subjects | Computational Fluid Dynamics (CFD) Engineering Engineering, Chemical Large eddy simulations Modeling validation Non-premixed flames Radiative heat transfer model Science & Technology Technology Turbulent combustion |
title | CFD study of non-premixed swirling burners: Effect of turbulence models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T05%3A38%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFD%20study%20of%20non-premixed%20swirling%20burners:%20Effect%20of%20turbulence%20models&rft.jtitle=Chinese%20journal%20of%20chemical%20engineering&rft.au=Khodabandeh,%20Erfan&rft.date=2020-04-01&rft.volume=28&rft.issue=4&rft.spage=1029&rft.epage=1038&rft.pages=1029-1038&rft.issn=1004-9541&rft.eissn=2210-321X&rft_id=info:doi/10.1016/j.cjche.2020.02.016&rft_dat=%3Cwanfang_jour_webof%3Ecjce202004009%3C/wanfang_jour_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=cjce202004009&rft_els_id=S1004954120300811&rfr_iscdi=true |