CFD study of non-premixed swirling burners: Effect of turbulence models

This research investigates a numerical simulation of swirling turbulent non-premixed combustion. The effects on the combustion characteristics are examined with three turbulence models: namely as the Reynolds stress model, spectral turbulence analysis and Re-Normalization Group. In addition, the P-1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of chemical engineering 2020-04, Vol.28 (4), p.1029-1038
Hauptverfasser: Khodabandeh, Erfan, Moghadasi, Hesam, Saffari Pour, Mohsen, Ersson, Mikael, Jönsson, Pär G., Rosen, Marc A., Rahbari, Alireza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1038
container_issue 4
container_start_page 1029
container_title Chinese journal of chemical engineering
container_volume 28
creator Khodabandeh, Erfan
Moghadasi, Hesam
Saffari Pour, Mohsen
Ersson, Mikael
Jönsson, Pär G.
Rosen, Marc A.
Rahbari, Alireza
description This research investigates a numerical simulation of swirling turbulent non-premixed combustion. The effects on the combustion characteristics are examined with three turbulence models: namely as the Reynolds stress model, spectral turbulence analysis and Re-Normalization Group. In addition, the P-1 and discrete ordinate (DO) models are used to simulate the radiative heat transfer in this model. The governing equations associated with the required boundary conditions are solved using the numerical model. The accuracy of this model is validated with the published experimental data and the comparison elucidates that there is a reasonable agreement between the obtained values from this model and the corresponding experimental quantities. Among different models proposed in this research, the Reynolds stress model with the Probability Density Function (PDF) approach is more accurate (nearly up to 50%) than other turbulent models for a swirling flow field. Regarding the effect of radiative heat transfer model, it is observed that the discrete ordinate model is more precise than the P-1 model in anticipating the experimental behavior. This model is able to simulate the subcritical nature of the isothermal flow as well as the size and shape of the internal recirculation induced by the swirl due to combustion. [Display omitted] •A PDF approach is used to predict the turbulent non-premixed combustion.•Three turbulent models (RSM, STA and RNG) are employed for modeling the swirling flows.•P-1 and DO models are implemented for the simulation of the radiative heat transfer.•The use of the RSM and DO models to predict turbulence and radiative heat transfer, respectively, show better accuracy.•Increasing the swirl number augments the turbulence intensity and fluid recirculation.
doi_str_mv 10.1016/j.cjche.2020.02.016
format Article
fullrecord <record><control><sourceid>wanfang_jour_webof</sourceid><recordid>TN_cdi_webofscience_primary_000555483300009CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>cjce202004009</wanfj_id><els_id>S1004954120300811</els_id><sourcerecordid>cjce202004009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-546f048b4ee2e979ed5c136b1e423b40866f203d478ea72c3876c0e9d69bb7463</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVJoZu0v6AXX3oKdkcf_ir0EJxPCOTSlt6EJY82cnelRbK7zb-vnF1yDDlJDM87mnlEyGcKBQVafR0LPepHLBgwKIAVqfaOrBijkHNGf5-QFQUQeVsK-oGcxjhCAhvarMhNd32ZxWkenjJvMuddvgu4tf9wyOLeho1160zNwWGI37IrY1BPCzjNQc0bdBqzrR9wEz-S96bfRPx0PM_Iz-urH91tfv9wc9dd3Oea13TKS1EZEI0SiAzbusWh1JRXiqJgXAloqsow4IOoG-xrpnlTVxqwHapWqVpU_Izkh75xj7tZyV2w2z48Sd9beWl_XUgf1vLP9ChZLYCXif9y4Pe9M71by9GnbdKEMhnDxRcIgDZx_MDp4GMMaF46U5CLYznKZ8dyyUhgMtVS6vzYHZU3UdvFyEsSAMqyFA3n6fb8RvN2urNTP1nvOj-7KUW_H6JJNf61GOQxPtiQvkQO3r466H9NJ6VW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CFD study of non-premixed swirling burners: Effect of turbulence models</title><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><source>Alma/SFX Local Collection</source><creator>Khodabandeh, Erfan ; Moghadasi, Hesam ; Saffari Pour, Mohsen ; Ersson, Mikael ; Jönsson, Pär G. ; Rosen, Marc A. ; Rahbari, Alireza</creator><creatorcontrib>Khodabandeh, Erfan ; Moghadasi, Hesam ; Saffari Pour, Mohsen ; Ersson, Mikael ; Jönsson, Pär G. ; Rosen, Marc A. ; Rahbari, Alireza</creatorcontrib><description>This research investigates a numerical simulation of swirling turbulent non-premixed combustion. The effects on the combustion characteristics are examined with three turbulence models: namely as the Reynolds stress model, spectral turbulence analysis and Re-Normalization Group. In addition, the P-1 and discrete ordinate (DO) models are used to simulate the radiative heat transfer in this model. The governing equations associated with the required boundary conditions are solved using the numerical model. The accuracy of this model is validated with the published experimental data and the comparison elucidates that there is a reasonable agreement between the obtained values from this model and the corresponding experimental quantities. Among different models proposed in this research, the Reynolds stress model with the Probability Density Function (PDF) approach is more accurate (nearly up to 50%) than other turbulent models for a swirling flow field. Regarding the effect of radiative heat transfer model, it is observed that the discrete ordinate model is more precise than the P-1 model in anticipating the experimental behavior. This model is able to simulate the subcritical nature of the isothermal flow as well as the size and shape of the internal recirculation induced by the swirl due to combustion. [Display omitted] •A PDF approach is used to predict the turbulent non-premixed combustion.•Three turbulent models (RSM, STA and RNG) are employed for modeling the swirling flows.•P-1 and DO models are implemented for the simulation of the radiative heat transfer.•The use of the RSM and DO models to predict turbulence and radiative heat transfer, respectively, show better accuracy.•Increasing the swirl number augments the turbulence intensity and fluid recirculation.</description><identifier>ISSN: 1004-9541</identifier><identifier>ISSN: 2210-321X</identifier><identifier>EISSN: 2210-321X</identifier><identifier>DOI: 10.1016/j.cjche.2020.02.016</identifier><language>eng</language><publisher>BEIJING: Elsevier B.V</publisher><subject>Computational Fluid Dynamics (CFD) ; Engineering ; Engineering, Chemical ; Large eddy simulations ; Modeling validation ; Non-premixed flames ; Radiative heat transfer model ; Science &amp; Technology ; Technology ; Turbulent combustion</subject><ispartof>Chinese journal of chemical engineering, 2020-04, Vol.28 (4), p.1029-1038</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>21</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000555483300009</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c371t-546f048b4ee2e979ed5c136b1e423b40866f203d478ea72c3876c0e9d69bb7463</citedby><cites>FETCH-LOGICAL-c371t-546f048b4ee2e979ed5c136b1e423b40866f203d478ea72c3876c0e9d69bb7463</cites><orcidid>0000-0003-4384-7984 ; 0000-0001-6363-739X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/cjce/cjce.jpg</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cjche.2020.02.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,782,786,887,3552,27931,27932,28255,46002</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-274035$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Khodabandeh, Erfan</creatorcontrib><creatorcontrib>Moghadasi, Hesam</creatorcontrib><creatorcontrib>Saffari Pour, Mohsen</creatorcontrib><creatorcontrib>Ersson, Mikael</creatorcontrib><creatorcontrib>Jönsson, Pär G.</creatorcontrib><creatorcontrib>Rosen, Marc A.</creatorcontrib><creatorcontrib>Rahbari, Alireza</creatorcontrib><title>CFD study of non-premixed swirling burners: Effect of turbulence models</title><title>Chinese journal of chemical engineering</title><addtitle>CHINESE J CHEM ENG</addtitle><description>This research investigates a numerical simulation of swirling turbulent non-premixed combustion. The effects on the combustion characteristics are examined with three turbulence models: namely as the Reynolds stress model, spectral turbulence analysis and Re-Normalization Group. In addition, the P-1 and discrete ordinate (DO) models are used to simulate the radiative heat transfer in this model. The governing equations associated with the required boundary conditions are solved using the numerical model. The accuracy of this model is validated with the published experimental data and the comparison elucidates that there is a reasonable agreement between the obtained values from this model and the corresponding experimental quantities. Among different models proposed in this research, the Reynolds stress model with the Probability Density Function (PDF) approach is more accurate (nearly up to 50%) than other turbulent models for a swirling flow field. Regarding the effect of radiative heat transfer model, it is observed that the discrete ordinate model is more precise than the P-1 model in anticipating the experimental behavior. This model is able to simulate the subcritical nature of the isothermal flow as well as the size and shape of the internal recirculation induced by the swirl due to combustion. [Display omitted] •A PDF approach is used to predict the turbulent non-premixed combustion.•Three turbulent models (RSM, STA and RNG) are employed for modeling the swirling flows.•P-1 and DO models are implemented for the simulation of the radiative heat transfer.•The use of the RSM and DO models to predict turbulence and radiative heat transfer, respectively, show better accuracy.•Increasing the swirl number augments the turbulence intensity and fluid recirculation.</description><subject>Computational Fluid Dynamics (CFD)</subject><subject>Engineering</subject><subject>Engineering, Chemical</subject><subject>Large eddy simulations</subject><subject>Modeling validation</subject><subject>Non-premixed flames</subject><subject>Radiative heat transfer model</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><subject>Turbulent combustion</subject><issn>1004-9541</issn><issn>2210-321X</issn><issn>2210-321X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkU1r3DAQhkVJoZu0v6AXX3oKdkcf_ir0EJxPCOTSlt6EJY82cnelRbK7zb-vnF1yDDlJDM87mnlEyGcKBQVafR0LPepHLBgwKIAVqfaOrBijkHNGf5-QFQUQeVsK-oGcxjhCAhvarMhNd32ZxWkenjJvMuddvgu4tf9wyOLeho1160zNwWGI37IrY1BPCzjNQc0bdBqzrR9wEz-S96bfRPx0PM_Iz-urH91tfv9wc9dd3Oea13TKS1EZEI0SiAzbusWh1JRXiqJgXAloqsow4IOoG-xrpnlTVxqwHapWqVpU_Izkh75xj7tZyV2w2z48Sd9beWl_XUgf1vLP9ChZLYCXif9y4Pe9M71by9GnbdKEMhnDxRcIgDZx_MDp4GMMaF46U5CLYznKZ8dyyUhgMtVS6vzYHZU3UdvFyEsSAMqyFA3n6fb8RvN2urNTP1nvOj-7KUW_H6JJNf61GOQxPtiQvkQO3r466H9NJ6VW</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Khodabandeh, Erfan</creator><creator>Moghadasi, Hesam</creator><creator>Saffari Pour, Mohsen</creator><creator>Ersson, Mikael</creator><creator>Jönsson, Pär G.</creator><creator>Rosen, Marc A.</creator><creator>Rahbari, Alireza</creator><general>Elsevier B.V</general><general>Chemical Industry Press Co Ltd</general><general>Research School of Engineering, The Australian National University, Canberra, ACT 2601, Australia</general><general>Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran%School of Mechanical Engineering, Department of Energy Conversion, Iran University of Sciesnce and Technology (IUST), Narmak 16846-13114, Tehran, Iran%Department of Mechanical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran</general><general>Division of Processes, Department of Materials Science and Engineering, KTH Royal Institute of Technology, Brinellv?gen 23, SE-10044 Stockholm, Sweden%Division of Processes, Department of Materials Science and Engineering, KTH Royal Institute of Technology, Brinellv?gen 23, SE-10044 Stockholm, Sweden%Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario, L1H 7K4, Canada%Department of Mechanical Engineering, Shahid Rajaee Teacher Training University (SRTTU), Tehran, Iran</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><orcidid>https://orcid.org/0000-0003-4384-7984</orcidid><orcidid>https://orcid.org/0000-0001-6363-739X</orcidid></search><sort><creationdate>20200401</creationdate><title>CFD study of non-premixed swirling burners: Effect of turbulence models</title><author>Khodabandeh, Erfan ; Moghadasi, Hesam ; Saffari Pour, Mohsen ; Ersson, Mikael ; Jönsson, Pär G. ; Rosen, Marc A. ; Rahbari, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-546f048b4ee2e979ed5c136b1e423b40866f203d478ea72c3876c0e9d69bb7463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational Fluid Dynamics (CFD)</topic><topic>Engineering</topic><topic>Engineering, Chemical</topic><topic>Large eddy simulations</topic><topic>Modeling validation</topic><topic>Non-premixed flames</topic><topic>Radiative heat transfer model</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><topic>Turbulent combustion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khodabandeh, Erfan</creatorcontrib><creatorcontrib>Moghadasi, Hesam</creatorcontrib><creatorcontrib>Saffari Pour, Mohsen</creatorcontrib><creatorcontrib>Ersson, Mikael</creatorcontrib><creatorcontrib>Jönsson, Pär G.</creatorcontrib><creatorcontrib>Rosen, Marc A.</creatorcontrib><creatorcontrib>Rahbari, Alireza</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>Chinese journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khodabandeh, Erfan</au><au>Moghadasi, Hesam</au><au>Saffari Pour, Mohsen</au><au>Ersson, Mikael</au><au>Jönsson, Pär G.</au><au>Rosen, Marc A.</au><au>Rahbari, Alireza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFD study of non-premixed swirling burners: Effect of turbulence models</atitle><jtitle>Chinese journal of chemical engineering</jtitle><stitle>CHINESE J CHEM ENG</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>28</volume><issue>4</issue><spage>1029</spage><epage>1038</epage><pages>1029-1038</pages><issn>1004-9541</issn><issn>2210-321X</issn><eissn>2210-321X</eissn><abstract>This research investigates a numerical simulation of swirling turbulent non-premixed combustion. The effects on the combustion characteristics are examined with three turbulence models: namely as the Reynolds stress model, spectral turbulence analysis and Re-Normalization Group. In addition, the P-1 and discrete ordinate (DO) models are used to simulate the radiative heat transfer in this model. The governing equations associated with the required boundary conditions are solved using the numerical model. The accuracy of this model is validated with the published experimental data and the comparison elucidates that there is a reasonable agreement between the obtained values from this model and the corresponding experimental quantities. Among different models proposed in this research, the Reynolds stress model with the Probability Density Function (PDF) approach is more accurate (nearly up to 50%) than other turbulent models for a swirling flow field. Regarding the effect of radiative heat transfer model, it is observed that the discrete ordinate model is more precise than the P-1 model in anticipating the experimental behavior. This model is able to simulate the subcritical nature of the isothermal flow as well as the size and shape of the internal recirculation induced by the swirl due to combustion. [Display omitted] •A PDF approach is used to predict the turbulent non-premixed combustion.•Three turbulent models (RSM, STA and RNG) are employed for modeling the swirling flows.•P-1 and DO models are implemented for the simulation of the radiative heat transfer.•The use of the RSM and DO models to predict turbulence and radiative heat transfer, respectively, show better accuracy.•Increasing the swirl number augments the turbulence intensity and fluid recirculation.</abstract><cop>BEIJING</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cjche.2020.02.016</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4384-7984</orcidid><orcidid>https://orcid.org/0000-0001-6363-739X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1004-9541
ispartof Chinese journal of chemical engineering, 2020-04, Vol.28 (4), p.1029-1038
issn 1004-9541
2210-321X
2210-321X
language eng
recordid cdi_webofscience_primary_000555483300009CitationCount
source Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier); Alma/SFX Local Collection
subjects Computational Fluid Dynamics (CFD)
Engineering
Engineering, Chemical
Large eddy simulations
Modeling validation
Non-premixed flames
Radiative heat transfer model
Science & Technology
Technology
Turbulent combustion
title CFD study of non-premixed swirling burners: Effect of turbulence models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T05%3A38%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFD%20study%20of%20non-premixed%20swirling%20burners:%20Effect%20of%20turbulence%20models&rft.jtitle=Chinese%20journal%20of%20chemical%20engineering&rft.au=Khodabandeh,%20Erfan&rft.date=2020-04-01&rft.volume=28&rft.issue=4&rft.spage=1029&rft.epage=1038&rft.pages=1029-1038&rft.issn=1004-9541&rft.eissn=2210-321X&rft_id=info:doi/10.1016/j.cjche.2020.02.016&rft_dat=%3Cwanfang_jour_webof%3Ecjce202004009%3C/wanfang_jour_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=cjce202004009&rft_els_id=S1004954120300811&rfr_iscdi=true