On diversity of certain t-intersecting families
Let $[n]=\{1,2,\dots, n\}$ and $2^{[n]}$ be the set of all subsets of $[n]$. For a family $\F\subseteq 2^{[n]}$, its diversity, denoted by $\di(\F)$, is defined to be \begin{align*} \di(\F)=\min_{x\in [n]} \left\{ \left\vert \F(\overline x) \right\vert \right\}, \end{align*} where $\F(\overline x)=\...
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2020, 57(4), , pp.815-829 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $[n]=\{1,2,\dots, n\}$ and $2^{[n]}$ be the set of all subsets of $[n]$. For a family $\F\subseteq 2^{[n]}$, its diversity, denoted by $\di(\F)$, is defined to be \begin{align*} \di(\F)=\min_{x\in [n]} \left\{ \left\vert \F(\overline x) \right\vert \right\}, \end{align*} where $\F(\overline x)=\left\{ F\in\F : x\notin F \right\}$. Basically, $\di(\F)$ measures how far $\F$ is from a trivial intersecting family, which is called a star. In this paper, we consider a generalization of diversity for $t$-intersecting family. KCI Citation Count: 0 |
---|---|
ISSN: | 1015-8634 2234-3016 |
DOI: | 10.4134/BKMS.b190301 |