On diversity of certain t-intersecting families

Let $[n]=\{1,2,\dots, n\}$ and $2^{[n]}$ be the set of all subsets of $[n]$. For a family $\F\subseteq 2^{[n]}$, its diversity, denoted by $\di(\F)$, is defined to be \begin{align*} \di(\F)=\min_{x\in [n]} \left\{ \left\vert \F(\overline x) \right\vert \right\}, \end{align*} where $\F(\overline x)=\...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2020, 57(4), , pp.815-829
Hauptverfasser: Cheng Yeaw Ku, Kok Bin Wong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $[n]=\{1,2,\dots, n\}$ and $2^{[n]}$ be the set of all subsets of $[n]$. For a family $\F\subseteq 2^{[n]}$, its diversity, denoted by $\di(\F)$, is defined to be \begin{align*} \di(\F)=\min_{x\in [n]} \left\{ \left\vert \F(\overline x) \right\vert \right\}, \end{align*} where $\F(\overline x)=\left\{ F\in\F : x\notin F \right\}$. Basically, $\di(\F)$ measures how far $\F$ is from a trivial intersecting family, which is called a star. In this paper, we consider a generalization of diversity for $t$-intersecting family. KCI Citation Count: 0
ISSN:1015-8634
2234-3016
DOI:10.4134/BKMS.b190301