The Carnegie Supernova Project II: Observations of the intermediate-luminosity red transient SNhunt120

We present multiwavelength observations of two gap transients that were followed by the Carnegie Supernova Project-II. The observations are supplemented with data obtained by a number of different programs. Here in the first of two papers, we focus on the intermediate-luminosity red transient (ILRT)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2020-07, Vol.639, p.A103, Article 103
Hauptverfasser: Stritzinger, M. D., Taddia, F., Fraser, M., Tauris, T. M., Suntzeff, N. B., Contreras, C., Drybye, S., Galbany, L., Holmbo, S., Morrell, N., Phillips, M. M., Prieto, J. L., Anais, J., Ashall, C., Baron, E., Burns, C. R., Hoeflich, P., Hsiao, E. Y., Karamehmetoglu, E., Moriya, T. J., Botticella, M. T., Campillay, A., Castellon, S., Gonzalez, C., Pumo, M. L., Torres-Robledo, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page A103
container_title Astronomy and astrophysics (Berlin)
container_volume 639
creator Stritzinger, M. D.
Taddia, F.
Fraser, M.
Tauris, T. M.
Suntzeff, N. B.
Contreras, C.
Drybye, S.
Galbany, L.
Holmbo, S.
Morrell, N.
Phillips, M. M.
Prieto, J. L.
Anais, J.
Ashall, C.
Baron, E.
Burns, C. R.
Hoeflich, P.
Hsiao, E. Y.
Karamehmetoglu, E.
Moriya, T. J.
Botticella, M. T.
Campillay, A.
Castellon, S.
Gonzalez, C.
Pumo, M. L.
Torres-Robledo, S.
description We present multiwavelength observations of two gap transients that were followed by the Carnegie Supernova Project-II. The observations are supplemented with data obtained by a number of different programs. Here in the first of two papers, we focus on the intermediate-luminosity red transient (ILRT) designated SNhunt120, while in a companion paper we examine the luminous red novae AT 2014ej. Our data set for SNhunt120 consists of an early optical discovery, estimated to be within three days after outburst, the subsequent optical and near-infrared broadband followup extending over a period of about two months, two visual and two near-infrared wavelength spectra, and Spitzer Space Telescope observations extending from early (+28 d) to late (+1155 d) phases. SNhunt120 resembles other ILRTs such as NGC 300-2008-OT and SN 2008S, and like these other ILRTs, SNhunt120 exhibits prevalent mid-infrared emission at both early and late phases. From the comparison of SNhunt120 and other ILRTs to electron-capture supernova simulations, we find that the current models underestimate the explosion kinetic energy and thereby produce synthetic light curves that overestimate the luminosity. Finally, examination of pre-outburst Hubble Space Telescope images yields no progenitor detection.
doi_str_mv 10.1051/0004-6361/202038018
format Article
fullrecord <record><control><sourceid>webofscience_cross</sourceid><recordid>TN_cdi_webofscience_primary_000555011900002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>000555011900002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c199t-bcbe1ce21521af37fc8eefc38a938cc53079d30465e11773012a8d24dd56627a3</originalsourceid><addsrcrecordid>eNqNkE1LAzEQQIMoWKu_wEvusjaT7EfWmyx-FIoVWs9LNjuxKe2mJKnSf--ulZ49DQPvDcMj5BbYPbAMJoyxNMlFDhPOOBOSgTwjI0gFT1iR5udkdCIuyVUI637lIMWImOUKaaV8h58W6WK_Q9-5L0XfvVujjnQ6faDzJqD_UtG6LlBnaOwV20X0W2ytiphs9lvbuWDjgXpsafSqCxa7SBdvq30XgbNrcmHUJuDN3xyTj-enZfWazOYv0-pxlmgoy5g0ukHQyCHjoIwojJaIRgupSiG1zgQrylawNM8QoCgEA65ky9O2zfKcF0qMiTje1d6F4NHUO2-3yh9qYPWQqh5C1EOI-pSqt-6O1jc2zgTd_67xZPZGlmUMoGRDtp6W_6crG3_DVa4PIX4AqVx9Mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Carnegie Supernova Project II: Observations of the intermediate-luminosity red transient SNhunt120</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Stritzinger, M. D. ; Taddia, F. ; Fraser, M. ; Tauris, T. M. ; Suntzeff, N. B. ; Contreras, C. ; Drybye, S. ; Galbany, L. ; Holmbo, S. ; Morrell, N. ; Phillips, M. M. ; Prieto, J. L. ; Anais, J. ; Ashall, C. ; Baron, E. ; Burns, C. R. ; Hoeflich, P. ; Hsiao, E. Y. ; Karamehmetoglu, E. ; Moriya, T. J. ; Botticella, M. T. ; Campillay, A. ; Castellon, S. ; Gonzalez, C. ; Pumo, M. L. ; Torres-Robledo, S.</creator><creatorcontrib>Stritzinger, M. D. ; Taddia, F. ; Fraser, M. ; Tauris, T. M. ; Suntzeff, N. B. ; Contreras, C. ; Drybye, S. ; Galbany, L. ; Holmbo, S. ; Morrell, N. ; Phillips, M. M. ; Prieto, J. L. ; Anais, J. ; Ashall, C. ; Baron, E. ; Burns, C. R. ; Hoeflich, P. ; Hsiao, E. Y. ; Karamehmetoglu, E. ; Moriya, T. J. ; Botticella, M. T. ; Campillay, A. ; Castellon, S. ; Gonzalez, C. ; Pumo, M. L. ; Torres-Robledo, S.</creatorcontrib><description>We present multiwavelength observations of two gap transients that were followed by the Carnegie Supernova Project-II. The observations are supplemented with data obtained by a number of different programs. Here in the first of two papers, we focus on the intermediate-luminosity red transient (ILRT) designated SNhunt120, while in a companion paper we examine the luminous red novae AT 2014ej. Our data set for SNhunt120 consists of an early optical discovery, estimated to be within three days after outburst, the subsequent optical and near-infrared broadband followup extending over a period of about two months, two visual and two near-infrared wavelength spectra, and Spitzer Space Telescope observations extending from early (+28 d) to late (+1155 d) phases. SNhunt120 resembles other ILRTs such as NGC 300-2008-OT and SN 2008S, and like these other ILRTs, SNhunt120 exhibits prevalent mid-infrared emission at both early and late phases. From the comparison of SNhunt120 and other ILRTs to electron-capture supernova simulations, we find that the current models underestimate the explosion kinetic energy and thereby produce synthetic light curves that overestimate the luminosity. Finally, examination of pre-outburst Hubble Space Telescope images yields no progenitor detection.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/202038018</identifier><language>eng</language><publisher>LES ULIS CEDEX A: Edp Sciences S A</publisher><subject>Astronomy &amp; Astrophysics ; Physical Sciences ; Science &amp; Technology</subject><ispartof>Astronomy and astrophysics (Berlin), 2020-07, Vol.639, p.A103, Article 103</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>14</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000555011900002</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-c199t-bcbe1ce21521af37fc8eefc38a938cc53079d30465e11773012a8d24dd56627a3</cites><orcidid>0000-0002-3938-692X ; 0000-0002-8102-181X ; 0000-0002-1296-6887 ; 0000-0001-5393-1608 ; 0000-0002-4338-6586 ; 0000-0002-5221-7557 ; 0000-0001-6209-838X ; 0000-0002-3865-7265 ; 0000-0003-2191-1674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,3728,27929,27930,28253</link.rule.ids></links><search><creatorcontrib>Stritzinger, M. D.</creatorcontrib><creatorcontrib>Taddia, F.</creatorcontrib><creatorcontrib>Fraser, M.</creatorcontrib><creatorcontrib>Tauris, T. M.</creatorcontrib><creatorcontrib>Suntzeff, N. B.</creatorcontrib><creatorcontrib>Contreras, C.</creatorcontrib><creatorcontrib>Drybye, S.</creatorcontrib><creatorcontrib>Galbany, L.</creatorcontrib><creatorcontrib>Holmbo, S.</creatorcontrib><creatorcontrib>Morrell, N.</creatorcontrib><creatorcontrib>Phillips, M. M.</creatorcontrib><creatorcontrib>Prieto, J. L.</creatorcontrib><creatorcontrib>Anais, J.</creatorcontrib><creatorcontrib>Ashall, C.</creatorcontrib><creatorcontrib>Baron, E.</creatorcontrib><creatorcontrib>Burns, C. R.</creatorcontrib><creatorcontrib>Hoeflich, P.</creatorcontrib><creatorcontrib>Hsiao, E. Y.</creatorcontrib><creatorcontrib>Karamehmetoglu, E.</creatorcontrib><creatorcontrib>Moriya, T. J.</creatorcontrib><creatorcontrib>Botticella, M. T.</creatorcontrib><creatorcontrib>Campillay, A.</creatorcontrib><creatorcontrib>Castellon, S.</creatorcontrib><creatorcontrib>Gonzalez, C.</creatorcontrib><creatorcontrib>Pumo, M. L.</creatorcontrib><creatorcontrib>Torres-Robledo, S.</creatorcontrib><title>The Carnegie Supernova Project II: Observations of the intermediate-luminosity red transient SNhunt120</title><title>Astronomy and astrophysics (Berlin)</title><addtitle>ASTRON ASTROPHYS</addtitle><description>We present multiwavelength observations of two gap transients that were followed by the Carnegie Supernova Project-II. The observations are supplemented with data obtained by a number of different programs. Here in the first of two papers, we focus on the intermediate-luminosity red transient (ILRT) designated SNhunt120, while in a companion paper we examine the luminous red novae AT 2014ej. Our data set for SNhunt120 consists of an early optical discovery, estimated to be within three days after outburst, the subsequent optical and near-infrared broadband followup extending over a period of about two months, two visual and two near-infrared wavelength spectra, and Spitzer Space Telescope observations extending from early (+28 d) to late (+1155 d) phases. SNhunt120 resembles other ILRTs such as NGC 300-2008-OT and SN 2008S, and like these other ILRTs, SNhunt120 exhibits prevalent mid-infrared emission at both early and late phases. From the comparison of SNhunt120 and other ILRTs to electron-capture supernova simulations, we find that the current models underestimate the explosion kinetic energy and thereby produce synthetic light curves that overestimate the luminosity. Finally, examination of pre-outburst Hubble Space Telescope images yields no progenitor detection.</description><subject>Astronomy &amp; Astrophysics</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkE1LAzEQQIMoWKu_wEvusjaT7EfWmyx-FIoVWs9LNjuxKe2mJKnSf--ulZ49DQPvDcMj5BbYPbAMJoyxNMlFDhPOOBOSgTwjI0gFT1iR5udkdCIuyVUI637lIMWImOUKaaV8h58W6WK_Q9-5L0XfvVujjnQ6faDzJqD_UtG6LlBnaOwV20X0W2ytiphs9lvbuWDjgXpsafSqCxa7SBdvq30XgbNrcmHUJuDN3xyTj-enZfWazOYv0-pxlmgoy5g0ukHQyCHjoIwojJaIRgupSiG1zgQrylawNM8QoCgEA65ky9O2zfKcF0qMiTje1d6F4NHUO2-3yh9qYPWQqh5C1EOI-pSqt-6O1jc2zgTd_67xZPZGlmUMoGRDtp6W_6crG3_DVa4PIX4AqVx9Mg</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Stritzinger, M. D.</creator><creator>Taddia, F.</creator><creator>Fraser, M.</creator><creator>Tauris, T. M.</creator><creator>Suntzeff, N. B.</creator><creator>Contreras, C.</creator><creator>Drybye, S.</creator><creator>Galbany, L.</creator><creator>Holmbo, S.</creator><creator>Morrell, N.</creator><creator>Phillips, M. M.</creator><creator>Prieto, J. L.</creator><creator>Anais, J.</creator><creator>Ashall, C.</creator><creator>Baron, E.</creator><creator>Burns, C. R.</creator><creator>Hoeflich, P.</creator><creator>Hsiao, E. Y.</creator><creator>Karamehmetoglu, E.</creator><creator>Moriya, T. J.</creator><creator>Botticella, M. T.</creator><creator>Campillay, A.</creator><creator>Castellon, S.</creator><creator>Gonzalez, C.</creator><creator>Pumo, M. L.</creator><creator>Torres-Robledo, S.</creator><general>Edp Sciences S A</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3938-692X</orcidid><orcidid>https://orcid.org/0000-0002-8102-181X</orcidid><orcidid>https://orcid.org/0000-0002-1296-6887</orcidid><orcidid>https://orcid.org/0000-0001-5393-1608</orcidid><orcidid>https://orcid.org/0000-0002-4338-6586</orcidid><orcidid>https://orcid.org/0000-0002-5221-7557</orcidid><orcidid>https://orcid.org/0000-0001-6209-838X</orcidid><orcidid>https://orcid.org/0000-0002-3865-7265</orcidid><orcidid>https://orcid.org/0000-0003-2191-1674</orcidid></search><sort><creationdate>20200701</creationdate><title>The Carnegie Supernova Project II: Observations of the intermediate-luminosity red transient SNhunt120</title><author>Stritzinger, M. D. ; Taddia, F. ; Fraser, M. ; Tauris, T. M. ; Suntzeff, N. B. ; Contreras, C. ; Drybye, S. ; Galbany, L. ; Holmbo, S. ; Morrell, N. ; Phillips, M. M. ; Prieto, J. L. ; Anais, J. ; Ashall, C. ; Baron, E. ; Burns, C. R. ; Hoeflich, P. ; Hsiao, E. Y. ; Karamehmetoglu, E. ; Moriya, T. J. ; Botticella, M. T. ; Campillay, A. ; Castellon, S. ; Gonzalez, C. ; Pumo, M. L. ; Torres-Robledo, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c199t-bcbe1ce21521af37fc8eefc38a938cc53079d30465e11773012a8d24dd56627a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astronomy &amp; Astrophysics</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stritzinger, M. D.</creatorcontrib><creatorcontrib>Taddia, F.</creatorcontrib><creatorcontrib>Fraser, M.</creatorcontrib><creatorcontrib>Tauris, T. M.</creatorcontrib><creatorcontrib>Suntzeff, N. B.</creatorcontrib><creatorcontrib>Contreras, C.</creatorcontrib><creatorcontrib>Drybye, S.</creatorcontrib><creatorcontrib>Galbany, L.</creatorcontrib><creatorcontrib>Holmbo, S.</creatorcontrib><creatorcontrib>Morrell, N.</creatorcontrib><creatorcontrib>Phillips, M. M.</creatorcontrib><creatorcontrib>Prieto, J. L.</creatorcontrib><creatorcontrib>Anais, J.</creatorcontrib><creatorcontrib>Ashall, C.</creatorcontrib><creatorcontrib>Baron, E.</creatorcontrib><creatorcontrib>Burns, C. R.</creatorcontrib><creatorcontrib>Hoeflich, P.</creatorcontrib><creatorcontrib>Hsiao, E. Y.</creatorcontrib><creatorcontrib>Karamehmetoglu, E.</creatorcontrib><creatorcontrib>Moriya, T. J.</creatorcontrib><creatorcontrib>Botticella, M. T.</creatorcontrib><creatorcontrib>Campillay, A.</creatorcontrib><creatorcontrib>Castellon, S.</creatorcontrib><creatorcontrib>Gonzalez, C.</creatorcontrib><creatorcontrib>Pumo, M. L.</creatorcontrib><creatorcontrib>Torres-Robledo, S.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stritzinger, M. D.</au><au>Taddia, F.</au><au>Fraser, M.</au><au>Tauris, T. M.</au><au>Suntzeff, N. B.</au><au>Contreras, C.</au><au>Drybye, S.</au><au>Galbany, L.</au><au>Holmbo, S.</au><au>Morrell, N.</au><au>Phillips, M. M.</au><au>Prieto, J. L.</au><au>Anais, J.</au><au>Ashall, C.</au><au>Baron, E.</au><au>Burns, C. R.</au><au>Hoeflich, P.</au><au>Hsiao, E. Y.</au><au>Karamehmetoglu, E.</au><au>Moriya, T. J.</au><au>Botticella, M. T.</au><au>Campillay, A.</au><au>Castellon, S.</au><au>Gonzalez, C.</au><au>Pumo, M. L.</au><au>Torres-Robledo, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Carnegie Supernova Project II: Observations of the intermediate-luminosity red transient SNhunt120</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><stitle>ASTRON ASTROPHYS</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>639</volume><spage>A103</spage><pages>A103-</pages><artnum>103</artnum><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>We present multiwavelength observations of two gap transients that were followed by the Carnegie Supernova Project-II. The observations are supplemented with data obtained by a number of different programs. Here in the first of two papers, we focus on the intermediate-luminosity red transient (ILRT) designated SNhunt120, while in a companion paper we examine the luminous red novae AT 2014ej. Our data set for SNhunt120 consists of an early optical discovery, estimated to be within three days after outburst, the subsequent optical and near-infrared broadband followup extending over a period of about two months, two visual and two near-infrared wavelength spectra, and Spitzer Space Telescope observations extending from early (+28 d) to late (+1155 d) phases. SNhunt120 resembles other ILRTs such as NGC 300-2008-OT and SN 2008S, and like these other ILRTs, SNhunt120 exhibits prevalent mid-infrared emission at both early and late phases. From the comparison of SNhunt120 and other ILRTs to electron-capture supernova simulations, we find that the current models underestimate the explosion kinetic energy and thereby produce synthetic light curves that overestimate the luminosity. Finally, examination of pre-outburst Hubble Space Telescope images yields no progenitor detection.</abstract><cop>LES ULIS CEDEX A</cop><pub>Edp Sciences S A</pub><doi>10.1051/0004-6361/202038018</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3938-692X</orcidid><orcidid>https://orcid.org/0000-0002-8102-181X</orcidid><orcidid>https://orcid.org/0000-0002-1296-6887</orcidid><orcidid>https://orcid.org/0000-0001-5393-1608</orcidid><orcidid>https://orcid.org/0000-0002-4338-6586</orcidid><orcidid>https://orcid.org/0000-0002-5221-7557</orcidid><orcidid>https://orcid.org/0000-0001-6209-838X</orcidid><orcidid>https://orcid.org/0000-0002-3865-7265</orcidid><orcidid>https://orcid.org/0000-0003-2191-1674</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2020-07, Vol.639, p.A103, Article 103
issn 0004-6361
1432-0746
language eng
recordid cdi_webofscience_primary_000555011900002
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals
subjects Astronomy & Astrophysics
Physical Sciences
Science & Technology
title The Carnegie Supernova Project II: Observations of the intermediate-luminosity red transient SNhunt120
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T09%3A19%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-webofscience_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Carnegie%20Supernova%20Project%20II:%20Observations%20of%20the%20intermediate-luminosity%20red%20transient%20SNhunt120&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Stritzinger,%20M.%20D.&rft.date=2020-07-01&rft.volume=639&rft.spage=A103&rft.pages=A103-&rft.artnum=103&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202038018&rft_dat=%3Cwebofscience_cross%3E000555011900002%3C/webofscience_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true