Analysis of carpal bones on MR images for age estimation: First results of a new forensic approach
•In forensic age estimation there is growing interest in using MRI.•High-resolution MRI makes it possible to examine carpal microcomponents.•The development of carpal bones progresses through distinct stages.•A multiple linear regression model was used to estimate the individual’s age.•The ratio bet...
Gespeichert in:
Veröffentlicht in: | Forensic science international 2020-08, Vol.313, p.110341-110341, Article 110341 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110341 |
---|---|
container_issue | |
container_start_page | 110341 |
container_title | Forensic science international |
container_volume | 313 |
creator | Scendoni, Roberto Cingolani, Mariano Giovagnoni, Andrea Fogante, Marco Fedeli, Piergiorgio Pigolkin, Yu. I. Ferrante, Luigi Cameriere, Roberto |
description | •In forensic age estimation there is growing interest in using MRI.•High-resolution MRI makes it possible to examine carpal microcomponents.•The development of carpal bones progresses through distinct stages.•A multiple linear regression model was used to estimate the individual’s age.•The ratio between the NO and SG of carpal bones is related to chronological age.
Current multifactorial age estimation methods are based on radiography, however, in the forensic field there is growing interest in using magnetic resonance imaging (MRI). With regard to the carpal region, MRI provides more information for defining the individual ossification nuclei and the cartilage surrounding single bones. During the phase of bone growth, the progressive reduction of the cartilage layer is accompanied by the development of a cartilage-bone interface. The aim of our study was to create a new model for age estimation, based on the ratio between the area occupied by the nucleus of ossification (NO) and the surface of growth (SG) of each carpal bone, the latter derived by adding NO to the area of cartilage-bone interface. We analyzed 57 MRI scans of Italian subjects aged between 12 and 20 years, without growth diseases, endocrine disorders or osteodystrophy. Measurements of NO and SG areas were extracted using ImageJ software, and the ratio between the NO and SG of each bone (NOSG) was calculated. A multiple linear regression model was used to estimate the individual’s age as a function of the variables: gender and wrist bone measurements. The results showed that the best model was obtained with 6 predictors (nvmax=6): Gender, and the NOSG of the Trapezoid, Trapezium, Scaphoid, Pisiform, and Capitate. The median of the residuals (observed age minus predicted age) was −0.025 years, with an IQR of 0.19 years. Thus a new forensic approach to age assessment using MRI is introduced in this paper, which gives the preliminary results. |
doi_str_mv | 10.1016/j.forsciint.2020.110341 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000554879700002CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0379073820302036</els_id><sourcerecordid>2408196814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-1fb9f5894d55d52c8efb6c2868bd82076281141c70d4e3030e35f88a791158683</originalsourceid><addsrcrecordid>eNqNkU2P0zAQhi0EYsvCXwBLXJBQir8SO9yqigWkRUgIzpbjTMBVahc7YbX_nmlTeuACJ8-MnnfGMy8hLzhbc8abN7v1kHLxIcRpLZjAKmdS8QdkxY0WVSOMfEhWTOq2YlqaK_KklB1jrK5F85hcSaG0VEasSLeJbrwvodA0UO_ywY20SxEwj_TTFxr27jsmOI1iQKFMWJlCim_pTchlohnKPE4nuaMR7o4oxBI8dYdDTs7_eEoeDW4s8Oz8XpNvN---bj9Ut5_ff9xubiuvmnqq-NC1Q21a1dd1XwtvYOgaL0xjut4IpnEnzhX3mvUKJJMMZD0Y43TLeY2UvCavlr449ueMP7X7UDyMo4uQ5mKFYoa3jeEK0Zd_obs0Z7zEkRJKcSGFREovlM-plAyDPWTcPt9bzuzRBruzFxvs0Qa72IDK5-f-c7eH_qL7c3cEzALcQZcG7ADRwwU7GaWMbjVGTGzDdDr5Ns1xQunr_5civVlowMv_CpDtWdGHDH6yfQr_3OY3i8W79A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424412323</pqid></control><display><type>article</type><title>Analysis of carpal bones on MR images for age estimation: First results of a new forensic approach</title><source>MEDLINE</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Scendoni, Roberto ; Cingolani, Mariano ; Giovagnoni, Andrea ; Fogante, Marco ; Fedeli, Piergiorgio ; Pigolkin, Yu. I. ; Ferrante, Luigi ; Cameriere, Roberto</creator><creatorcontrib>Scendoni, Roberto ; Cingolani, Mariano ; Giovagnoni, Andrea ; Fogante, Marco ; Fedeli, Piergiorgio ; Pigolkin, Yu. I. ; Ferrante, Luigi ; Cameriere, Roberto</creatorcontrib><description>•In forensic age estimation there is growing interest in using MRI.•High-resolution MRI makes it possible to examine carpal microcomponents.•The development of carpal bones progresses through distinct stages.•A multiple linear regression model was used to estimate the individual’s age.•The ratio between the NO and SG of carpal bones is related to chronological age.
Current multifactorial age estimation methods are based on radiography, however, in the forensic field there is growing interest in using magnetic resonance imaging (MRI). With regard to the carpal region, MRI provides more information for defining the individual ossification nuclei and the cartilage surrounding single bones. During the phase of bone growth, the progressive reduction of the cartilage layer is accompanied by the development of a cartilage-bone interface. The aim of our study was to create a new model for age estimation, based on the ratio between the area occupied by the nucleus of ossification (NO) and the surface of growth (SG) of each carpal bone, the latter derived by adding NO to the area of cartilage-bone interface. We analyzed 57 MRI scans of Italian subjects aged between 12 and 20 years, without growth diseases, endocrine disorders or osteodystrophy. Measurements of NO and SG areas were extracted using ImageJ software, and the ratio between the NO and SG of each bone (NOSG) was calculated. A multiple linear regression model was used to estimate the individual’s age as a function of the variables: gender and wrist bone measurements. The results showed that the best model was obtained with 6 predictors (nvmax=6): Gender, and the NOSG of the Trapezoid, Trapezium, Scaphoid, Pisiform, and Capitate. The median of the residuals (observed age minus predicted age) was −0.025 years, with an IQR of 0.19 years. Thus a new forensic approach to age assessment using MRI is introduced in this paper, which gives the preliminary results.</description><identifier>ISSN: 0379-0738</identifier><identifier>EISSN: 1872-6283</identifier><identifier>DOI: 10.1016/j.forsciint.2020.110341</identifier><identifier>PMID: 32473482</identifier><language>eng</language><publisher>CLARE: Elsevier B.V</publisher><subject>Adolescent ; Age ; Age determination ; Age Determination by Skeleton - methods ; Age estimation ; Bias ; Biomedical materials ; Bone growth ; Bones ; Carpal bones ; Carpal Bones - anatomy & histology ; Carpal Bones - diagnostic imaging ; Cartilage ; Child ; Chronology ; Endocrine disorders ; Female ; Females ; Forensic Anthropology ; Forensic osteology ; Forensic science ; Forensic sciences ; Gender ; Humans ; Image Processing, Computer-Assisted ; Legal Medicine ; Life Sciences & Biomedicine ; Linear Models ; Magnetic Resonance Imaging ; Male ; Males ; Medicine, Legal ; Nuclei ; Ossification ; Osteodystrophy ; Osteogenesis ; Radiography ; Regression analysis ; Regression model ; Regression models ; Science & Technology ; Wrist ; X-rays ; Young Adult</subject><ispartof>Forensic science international, 2020-08, Vol.313, p.110341-110341, Article 110341</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © 2020 Elsevier B.V. All rights reserved.</rights><rights>2020. Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>12</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000554879700002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c465t-1fb9f5894d55d52c8efb6c2868bd82076281141c70d4e3030e35f88a791158683</citedby><cites>FETCH-LOGICAL-c465t-1fb9f5894d55d52c8efb6c2868bd82076281141c70d4e3030e35f88a791158683</cites><orcidid>0000-0001-9444-972X ; 0000-0003-2993-5718 ; 0000-0003-1916-1819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2424412323?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,28253,46000,64390,64392,64394,72474</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32473482$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scendoni, Roberto</creatorcontrib><creatorcontrib>Cingolani, Mariano</creatorcontrib><creatorcontrib>Giovagnoni, Andrea</creatorcontrib><creatorcontrib>Fogante, Marco</creatorcontrib><creatorcontrib>Fedeli, Piergiorgio</creatorcontrib><creatorcontrib>Pigolkin, Yu. I.</creatorcontrib><creatorcontrib>Ferrante, Luigi</creatorcontrib><creatorcontrib>Cameriere, Roberto</creatorcontrib><title>Analysis of carpal bones on MR images for age estimation: First results of a new forensic approach</title><title>Forensic science international</title><addtitle>FORENSIC SCI INT</addtitle><addtitle>Forensic Sci Int</addtitle><description>•In forensic age estimation there is growing interest in using MRI.•High-resolution MRI makes it possible to examine carpal microcomponents.•The development of carpal bones progresses through distinct stages.•A multiple linear regression model was used to estimate the individual’s age.•The ratio between the NO and SG of carpal bones is related to chronological age.
Current multifactorial age estimation methods are based on radiography, however, in the forensic field there is growing interest in using magnetic resonance imaging (MRI). With regard to the carpal region, MRI provides more information for defining the individual ossification nuclei and the cartilage surrounding single bones. During the phase of bone growth, the progressive reduction of the cartilage layer is accompanied by the development of a cartilage-bone interface. The aim of our study was to create a new model for age estimation, based on the ratio between the area occupied by the nucleus of ossification (NO) and the surface of growth (SG) of each carpal bone, the latter derived by adding NO to the area of cartilage-bone interface. We analyzed 57 MRI scans of Italian subjects aged between 12 and 20 years, without growth diseases, endocrine disorders or osteodystrophy. Measurements of NO and SG areas were extracted using ImageJ software, and the ratio between the NO and SG of each bone (NOSG) was calculated. A multiple linear regression model was used to estimate the individual’s age as a function of the variables: gender and wrist bone measurements. The results showed that the best model was obtained with 6 predictors (nvmax=6): Gender, and the NOSG of the Trapezoid, Trapezium, Scaphoid, Pisiform, and Capitate. The median of the residuals (observed age minus predicted age) was −0.025 years, with an IQR of 0.19 years. Thus a new forensic approach to age assessment using MRI is introduced in this paper, which gives the preliminary results.</description><subject>Adolescent</subject><subject>Age</subject><subject>Age determination</subject><subject>Age Determination by Skeleton - methods</subject><subject>Age estimation</subject><subject>Bias</subject><subject>Biomedical materials</subject><subject>Bone growth</subject><subject>Bones</subject><subject>Carpal bones</subject><subject>Carpal Bones - anatomy & histology</subject><subject>Carpal Bones - diagnostic imaging</subject><subject>Cartilage</subject><subject>Child</subject><subject>Chronology</subject><subject>Endocrine disorders</subject><subject>Female</subject><subject>Females</subject><subject>Forensic Anthropology</subject><subject>Forensic osteology</subject><subject>Forensic science</subject><subject>Forensic sciences</subject><subject>Gender</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Legal Medicine</subject><subject>Life Sciences & Biomedicine</subject><subject>Linear Models</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Males</subject><subject>Medicine, Legal</subject><subject>Nuclei</subject><subject>Ossification</subject><subject>Osteodystrophy</subject><subject>Osteogenesis</subject><subject>Radiography</subject><subject>Regression analysis</subject><subject>Regression model</subject><subject>Regression models</subject><subject>Science & Technology</subject><subject>Wrist</subject><subject>X-rays</subject><subject>Young Adult</subject><issn>0379-0738</issn><issn>1872-6283</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkU2P0zAQhi0EYsvCXwBLXJBQir8SO9yqigWkRUgIzpbjTMBVahc7YbX_nmlTeuACJ8-MnnfGMy8hLzhbc8abN7v1kHLxIcRpLZjAKmdS8QdkxY0WVSOMfEhWTOq2YlqaK_KklB1jrK5F85hcSaG0VEasSLeJbrwvodA0UO_ywY20SxEwj_TTFxr27jsmOI1iQKFMWJlCim_pTchlohnKPE4nuaMR7o4oxBI8dYdDTs7_eEoeDW4s8Oz8XpNvN---bj9Ut5_ff9xubiuvmnqq-NC1Q21a1dd1XwtvYOgaL0xjut4IpnEnzhX3mvUKJJMMZD0Y43TLeY2UvCavlr449ueMP7X7UDyMo4uQ5mKFYoa3jeEK0Zd_obs0Z7zEkRJKcSGFREovlM-plAyDPWTcPt9bzuzRBruzFxvs0Qa72IDK5-f-c7eH_qL7c3cEzALcQZcG7ADRwwU7GaWMbjVGTGzDdDr5Ns1xQunr_5civVlowMv_CpDtWdGHDH6yfQr_3OY3i8W79A</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Scendoni, Roberto</creator><creator>Cingolani, Mariano</creator><creator>Giovagnoni, Andrea</creator><creator>Fogante, Marco</creator><creator>Fedeli, Piergiorgio</creator><creator>Pigolkin, Yu. I.</creator><creator>Ferrante, Luigi</creator><creator>Cameriere, Roberto</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Limited</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9444-972X</orcidid><orcidid>https://orcid.org/0000-0003-2993-5718</orcidid><orcidid>https://orcid.org/0000-0003-1916-1819</orcidid></search><sort><creationdate>202008</creationdate><title>Analysis of carpal bones on MR images for age estimation: First results of a new forensic approach</title><author>Scendoni, Roberto ; Cingolani, Mariano ; Giovagnoni, Andrea ; Fogante, Marco ; Fedeli, Piergiorgio ; Pigolkin, Yu. I. ; Ferrante, Luigi ; Cameriere, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-1fb9f5894d55d52c8efb6c2868bd82076281141c70d4e3030e35f88a791158683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adolescent</topic><topic>Age</topic><topic>Age determination</topic><topic>Age Determination by Skeleton - methods</topic><topic>Age estimation</topic><topic>Bias</topic><topic>Biomedical materials</topic><topic>Bone growth</topic><topic>Bones</topic><topic>Carpal bones</topic><topic>Carpal Bones - anatomy & histology</topic><topic>Carpal Bones - diagnostic imaging</topic><topic>Cartilage</topic><topic>Child</topic><topic>Chronology</topic><topic>Endocrine disorders</topic><topic>Female</topic><topic>Females</topic><topic>Forensic Anthropology</topic><topic>Forensic osteology</topic><topic>Forensic science</topic><topic>Forensic sciences</topic><topic>Gender</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Legal Medicine</topic><topic>Life Sciences & Biomedicine</topic><topic>Linear Models</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Males</topic><topic>Medicine, Legal</topic><topic>Nuclei</topic><topic>Ossification</topic><topic>Osteodystrophy</topic><topic>Osteogenesis</topic><topic>Radiography</topic><topic>Regression analysis</topic><topic>Regression model</topic><topic>Regression models</topic><topic>Science & Technology</topic><topic>Wrist</topic><topic>X-rays</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scendoni, Roberto</creatorcontrib><creatorcontrib>Cingolani, Mariano</creatorcontrib><creatorcontrib>Giovagnoni, Andrea</creatorcontrib><creatorcontrib>Fogante, Marco</creatorcontrib><creatorcontrib>Fedeli, Piergiorgio</creatorcontrib><creatorcontrib>Pigolkin, Yu. I.</creatorcontrib><creatorcontrib>Ferrante, Luigi</creatorcontrib><creatorcontrib>Cameriere, Roberto</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Forensic science international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scendoni, Roberto</au><au>Cingolani, Mariano</au><au>Giovagnoni, Andrea</au><au>Fogante, Marco</au><au>Fedeli, Piergiorgio</au><au>Pigolkin, Yu. I.</au><au>Ferrante, Luigi</au><au>Cameriere, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of carpal bones on MR images for age estimation: First results of a new forensic approach</atitle><jtitle>Forensic science international</jtitle><stitle>FORENSIC SCI INT</stitle><addtitle>Forensic Sci Int</addtitle><date>2020-08</date><risdate>2020</risdate><volume>313</volume><spage>110341</spage><epage>110341</epage><pages>110341-110341</pages><artnum>110341</artnum><issn>0379-0738</issn><eissn>1872-6283</eissn><abstract>•In forensic age estimation there is growing interest in using MRI.•High-resolution MRI makes it possible to examine carpal microcomponents.•The development of carpal bones progresses through distinct stages.•A multiple linear regression model was used to estimate the individual’s age.•The ratio between the NO and SG of carpal bones is related to chronological age.
Current multifactorial age estimation methods are based on radiography, however, in the forensic field there is growing interest in using magnetic resonance imaging (MRI). With regard to the carpal region, MRI provides more information for defining the individual ossification nuclei and the cartilage surrounding single bones. During the phase of bone growth, the progressive reduction of the cartilage layer is accompanied by the development of a cartilage-bone interface. The aim of our study was to create a new model for age estimation, based on the ratio between the area occupied by the nucleus of ossification (NO) and the surface of growth (SG) of each carpal bone, the latter derived by adding NO to the area of cartilage-bone interface. We analyzed 57 MRI scans of Italian subjects aged between 12 and 20 years, without growth diseases, endocrine disorders or osteodystrophy. Measurements of NO and SG areas were extracted using ImageJ software, and the ratio between the NO and SG of each bone (NOSG) was calculated. A multiple linear regression model was used to estimate the individual’s age as a function of the variables: gender and wrist bone measurements. The results showed that the best model was obtained with 6 predictors (nvmax=6): Gender, and the NOSG of the Trapezoid, Trapezium, Scaphoid, Pisiform, and Capitate. The median of the residuals (observed age minus predicted age) was −0.025 years, with an IQR of 0.19 years. Thus a new forensic approach to age assessment using MRI is introduced in this paper, which gives the preliminary results.</abstract><cop>CLARE</cop><pub>Elsevier B.V</pub><pmid>32473482</pmid><doi>10.1016/j.forsciint.2020.110341</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9444-972X</orcidid><orcidid>https://orcid.org/0000-0003-2993-5718</orcidid><orcidid>https://orcid.org/0000-0003-1916-1819</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0379-0738 |
ispartof | Forensic science international, 2020-08, Vol.313, p.110341-110341, Article 110341 |
issn | 0379-0738 1872-6283 |
language | eng |
recordid | cdi_webofscience_primary_000554879700002CitationCount |
source | MEDLINE; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland |
subjects | Adolescent Age Age determination Age Determination by Skeleton - methods Age estimation Bias Biomedical materials Bone growth Bones Carpal bones Carpal Bones - anatomy & histology Carpal Bones - diagnostic imaging Cartilage Child Chronology Endocrine disorders Female Females Forensic Anthropology Forensic osteology Forensic science Forensic sciences Gender Humans Image Processing, Computer-Assisted Legal Medicine Life Sciences & Biomedicine Linear Models Magnetic Resonance Imaging Male Males Medicine, Legal Nuclei Ossification Osteodystrophy Osteogenesis Radiography Regression analysis Regression model Regression models Science & Technology Wrist X-rays Young Adult |
title | Analysis of carpal bones on MR images for age estimation: First results of a new forensic approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T04%3A22%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20carpal%20bones%20on%20MR%20images%20for%20age%20estimation:%20First%20results%20of%20a%20new%20forensic%20approach&rft.jtitle=Forensic%20science%20international&rft.au=Scendoni,%20Roberto&rft.date=2020-08&rft.volume=313&rft.spage=110341&rft.epage=110341&rft.pages=110341-110341&rft.artnum=110341&rft.issn=0379-0738&rft.eissn=1872-6283&rft_id=info:doi/10.1016/j.forsciint.2020.110341&rft_dat=%3Cproquest_webof%3E2408196814%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424412323&rft_id=info:pmid/32473482&rft_els_id=S0379073820302036&rfr_iscdi=true |