Calculation of Nonlinear Stiffness of Rubber Pad under Different Temperatures and Prepressures

The static stiffness of rubber springs is affected by temperature and prepressure. In this thesis, the relationship between Young’s modulus and temperature of rubber was studied, and the quantitative relationship between them was determined. The approximate formula for calculating the static stiffne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shock and vibration 2020, Vol.2020 (2020), p.1-10, Article 8140782
Hauptverfasser: Guo, Zhaotuan, Dai, Liangcheng, Chi, Mao-Ru, Xu, Chuanbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 2020
container_start_page 1
container_title Shock and vibration
container_volume 2020
creator Guo, Zhaotuan
Dai, Liangcheng
Chi, Mao-Ru
Xu, Chuanbo
description The static stiffness of rubber springs is affected by temperature and prepressure. In this thesis, the relationship between Young’s modulus and temperature of rubber was studied, and the quantitative relationship between them was determined. The approximate formula for calculating the static stiffness of rubber pads was further modified, and the ellipse approximation method and convexity coefficient correction method were proposed. In addition, the influence of temperature on geometric nonlinearity was considered. The formula for calculating nonlinear stiffness includes two variables: temperature and prepressure. The results of tests and theoretical calculations demonstrate that the nonlinear formula can be a good approximation and that it can meet the requirements of engineering applications.
doi_str_mv 10.1155/2020/8140782
format Article
fullrecord <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_webofscience_primary_000552815500001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A639880163</galeid><doaj_id>oai_doaj_org_article_c3c72876016245089d1ccb463eef6ee1</doaj_id><sourcerecordid>A639880163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-ad898e98369de0f85f5be998595ac499fdd086f7ff028cc2ad9862288f4050b3</originalsourceid><addsrcrecordid>eNqNkUtv1TAUhCMEEqWwY40isYS0fsSOvazCq1IFFdw1lmMfF1_l2hfbUcW_x2mqdgnywkeTb8YnmqZ5jdEZxoydE0TQucA9GgR50pxgMbBOEkSf1hkNqJOckOfNi5z3CCFGeX_S_Bz1bJZZFx9DG137NYbZB9Cp_VG8cwFyXuXvyzRBaq-1bZdg6_ShfoQEobQ7OBwh6bIkyK0Otr1OcKxzXoWXzTOn5wyv7u_TZvfp42780l19-3w5Xlx1puesdNoKKUAKyqUF5ARzbAIpBZNMm15KZy0S3A3OISKMIdpKUf9FCNcjhiZ62lxusTbqvTomf9Dpj4raqzshphulU_FmBmWoGYgYOMKc9AwJabExU88pgOMAuGa93bKOKf5eIBe1j0sKdXtFekJ7yqQQlTrbqBtdQ31wsSRt6rFw8CYGcL7qF5xWuD5Fq-H9ZjAp5pzAPayJkVrbU2t76r69iosNv4Upumw8BAMPlrU-RkR11Qnh0Ze7Ase4hFKt7_7f-kj_8sHqW_-vtd5sNFQGnH6kCUZ0oPQv32DDDw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423435988</pqid></control><display><type>article</type><title>Calculation of Nonlinear Stiffness of Rubber Pad under Different Temperatures and Prepressures</title><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Guo, Zhaotuan ; Dai, Liangcheng ; Chi, Mao-Ru ; Xu, Chuanbo</creator><contributor>Nisticò, Nicola ; Nicola Nisticò</contributor><creatorcontrib>Guo, Zhaotuan ; Dai, Liangcheng ; Chi, Mao-Ru ; Xu, Chuanbo ; Nisticò, Nicola ; Nicola Nisticò</creatorcontrib><description>The static stiffness of rubber springs is affected by temperature and prepressure. In this thesis, the relationship between Young’s modulus and temperature of rubber was studied, and the quantitative relationship between them was determined. The approximate formula for calculating the static stiffness of rubber pads was further modified, and the ellipse approximation method and convexity coefficient correction method were proposed. In addition, the influence of temperature on geometric nonlinearity was considered. The formula for calculating nonlinear stiffness includes two variables: temperature and prepressure. The results of tests and theoretical calculations demonstrate that the nonlinear formula can be a good approximation and that it can meet the requirements of engineering applications.</description><identifier>ISSN: 1070-9622</identifier><identifier>EISSN: 1875-9203</identifier><identifier>DOI: 10.1155/2020/8140782</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Acoustics ; Approximation ; Computer simulation ; Convexity ; Crystallization ; Deformation ; Engineering ; Engineering, Mechanical ; Geometric nonlinearity ; Mathematical analysis ; Mechanics ; Modulus of elasticity ; Rubber ; Science &amp; Technology ; Springs (elastic) ; Stiffness ; Studies ; Technology ; Theory</subject><ispartof>Shock and vibration, 2020, Vol.2020 (2020), p.1-10, Article 8140782</ispartof><rights>Copyright © 2020 Chuanbo Xu et al.</rights><rights>COPYRIGHT 2020 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2020 Chuanbo Xu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000552815500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c465t-ad898e98369de0f85f5be998595ac499fdd086f7ff028cc2ad9862288f4050b3</citedby><cites>FETCH-LOGICAL-c465t-ad898e98369de0f85f5be998595ac499fdd086f7ff028cc2ad9862288f4050b3</cites><orcidid>0000-0001-6111-2768 ; 0000-0001-5155-5370</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,878,2103,2115,4025,27928,27929,27930,28253</link.rule.ids></links><search><contributor>Nisticò, Nicola</contributor><contributor>Nicola Nisticò</contributor><creatorcontrib>Guo, Zhaotuan</creatorcontrib><creatorcontrib>Dai, Liangcheng</creatorcontrib><creatorcontrib>Chi, Mao-Ru</creatorcontrib><creatorcontrib>Xu, Chuanbo</creatorcontrib><title>Calculation of Nonlinear Stiffness of Rubber Pad under Different Temperatures and Prepressures</title><title>Shock and vibration</title><addtitle>SHOCK VIB</addtitle><description>The static stiffness of rubber springs is affected by temperature and prepressure. In this thesis, the relationship between Young’s modulus and temperature of rubber was studied, and the quantitative relationship between them was determined. The approximate formula for calculating the static stiffness of rubber pads was further modified, and the ellipse approximation method and convexity coefficient correction method were proposed. In addition, the influence of temperature on geometric nonlinearity was considered. The formula for calculating nonlinear stiffness includes two variables: temperature and prepressure. The results of tests and theoretical calculations demonstrate that the nonlinear formula can be a good approximation and that it can meet the requirements of engineering applications.</description><subject>Acoustics</subject><subject>Approximation</subject><subject>Computer simulation</subject><subject>Convexity</subject><subject>Crystallization</subject><subject>Deformation</subject><subject>Engineering</subject><subject>Engineering, Mechanical</subject><subject>Geometric nonlinearity</subject><subject>Mathematical analysis</subject><subject>Mechanics</subject><subject>Modulus of elasticity</subject><subject>Rubber</subject><subject>Science &amp; Technology</subject><subject>Springs (elastic)</subject><subject>Stiffness</subject><subject>Studies</subject><subject>Technology</subject><subject>Theory</subject><issn>1070-9622</issn><issn>1875-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkUtv1TAUhCMEEqWwY40isYS0fsSOvazCq1IFFdw1lmMfF1_l2hfbUcW_x2mqdgnywkeTb8YnmqZ5jdEZxoydE0TQucA9GgR50pxgMbBOEkSf1hkNqJOckOfNi5z3CCFGeX_S_Bz1bJZZFx9DG137NYbZB9Cp_VG8cwFyXuXvyzRBaq-1bZdg6_ShfoQEobQ7OBwh6bIkyK0Otr1OcKxzXoWXzTOn5wyv7u_TZvfp42780l19-3w5Xlx1puesdNoKKUAKyqUF5ARzbAIpBZNMm15KZy0S3A3OISKMIdpKUf9FCNcjhiZ62lxusTbqvTomf9Dpj4raqzshphulU_FmBmWoGYgYOMKc9AwJabExU88pgOMAuGa93bKOKf5eIBe1j0sKdXtFekJ7yqQQlTrbqBtdQ31wsSRt6rFw8CYGcL7qF5xWuD5Fq-H9ZjAp5pzAPayJkVrbU2t76r69iosNv4Upumw8BAMPlrU-RkR11Qnh0Ze7Ase4hFKt7_7f-kj_8sHqW_-vtd5sNFQGnH6kCUZ0oPQv32DDDw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Guo, Zhaotuan</creator><creator>Dai, Liangcheng</creator><creator>Chi, Mao-Ru</creator><creator>Xu, Chuanbo</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Publishing Group</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6111-2768</orcidid><orcidid>https://orcid.org/0000-0001-5155-5370</orcidid></search><sort><creationdate>2020</creationdate><title>Calculation of Nonlinear Stiffness of Rubber Pad under Different Temperatures and Prepressures</title><author>Guo, Zhaotuan ; Dai, Liangcheng ; Chi, Mao-Ru ; Xu, Chuanbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-ad898e98369de0f85f5be998595ac499fdd086f7ff028cc2ad9862288f4050b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustics</topic><topic>Approximation</topic><topic>Computer simulation</topic><topic>Convexity</topic><topic>Crystallization</topic><topic>Deformation</topic><topic>Engineering</topic><topic>Engineering, Mechanical</topic><topic>Geometric nonlinearity</topic><topic>Mathematical analysis</topic><topic>Mechanics</topic><topic>Modulus of elasticity</topic><topic>Rubber</topic><topic>Science &amp; Technology</topic><topic>Springs (elastic)</topic><topic>Stiffness</topic><topic>Studies</topic><topic>Technology</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Zhaotuan</creatorcontrib><creatorcontrib>Dai, Liangcheng</creatorcontrib><creatorcontrib>Chi, Mao-Ru</creatorcontrib><creatorcontrib>Xu, Chuanbo</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Shock and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Zhaotuan</au><au>Dai, Liangcheng</au><au>Chi, Mao-Ru</au><au>Xu, Chuanbo</au><au>Nisticò, Nicola</au><au>Nicola Nisticò</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculation of Nonlinear Stiffness of Rubber Pad under Different Temperatures and Prepressures</atitle><jtitle>Shock and vibration</jtitle><stitle>SHOCK VIB</stitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><artnum>8140782</artnum><issn>1070-9622</issn><eissn>1875-9203</eissn><abstract>The static stiffness of rubber springs is affected by temperature and prepressure. In this thesis, the relationship between Young’s modulus and temperature of rubber was studied, and the quantitative relationship between them was determined. The approximate formula for calculating the static stiffness of rubber pads was further modified, and the ellipse approximation method and convexity coefficient correction method were proposed. In addition, the influence of temperature on geometric nonlinearity was considered. The formula for calculating nonlinear stiffness includes two variables: temperature and prepressure. The results of tests and theoretical calculations demonstrate that the nonlinear formula can be a good approximation and that it can meet the requirements of engineering applications.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/8140782</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6111-2768</orcidid><orcidid>https://orcid.org/0000-0001-5155-5370</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-9622
ispartof Shock and vibration, 2020, Vol.2020 (2020), p.1-10, Article 8140782
issn 1070-9622
1875-9203
language eng
recordid cdi_webofscience_primary_000552815500001CitationCount
source DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Acoustics
Approximation
Computer simulation
Convexity
Crystallization
Deformation
Engineering
Engineering, Mechanical
Geometric nonlinearity
Mathematical analysis
Mechanics
Modulus of elasticity
Rubber
Science & Technology
Springs (elastic)
Stiffness
Studies
Technology
Theory
title Calculation of Nonlinear Stiffness of Rubber Pad under Different Temperatures and Prepressures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T01%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculation%20of%20Nonlinear%20Stiffness%20of%20Rubber%20Pad%20under%20Different%20Temperatures%20and%20Prepressures&rft.jtitle=Shock%20and%20vibration&rft.au=Guo,%20Zhaotuan&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.artnum=8140782&rft.issn=1070-9622&rft.eissn=1875-9203&rft_id=info:doi/10.1155/2020/8140782&rft_dat=%3Cgale_webof%3EA639880163%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423435988&rft_id=info:pmid/&rft_galeid=A639880163&rft_doaj_id=oai_doaj_org_article_c3c72876016245089d1ccb463eef6ee1&rfr_iscdi=true