A multiscale parallel algorithm for dual-phase-lagging heat conduction equation in composite materials

In this paper, a new numerical scheme which combines the multiscale asymptotic method and the Laplace transformation, is presented for solving the 3-D dual-phase-lagging equation in composite materials. The convergence results of the truncated first-order and second-order multiscale approximate solu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2021-01, Vol.381, p.113024, Article 113024
Hauptverfasser: Zhai, Fang-Man, Cao, Li-Qun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a new numerical scheme which combines the multiscale asymptotic method and the Laplace transformation, is presented for solving the 3-D dual-phase-lagging equation in composite materials. The convergence results of the truncated first-order and second-order multiscale approximate solutions are given rigorously. The numerical experiments are carried out to validate the theoretical results of this paper. It is pointed out that the proposed method allows us to choose a relative coarse grid and solve problems in parallel, and therefore it can greatly save computer memory storage and CPU time.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2020.113024