A multiscale parallel algorithm for dual-phase-lagging heat conduction equation in composite materials
In this paper, a new numerical scheme which combines the multiscale asymptotic method and the Laplace transformation, is presented for solving the 3-D dual-phase-lagging equation in composite materials. The convergence results of the truncated first-order and second-order multiscale approximate solu...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2021-01, Vol.381, p.113024, Article 113024 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a new numerical scheme which combines the multiscale asymptotic method and the Laplace transformation, is presented for solving the 3-D dual-phase-lagging equation in composite materials. The convergence results of the truncated first-order and second-order multiscale approximate solutions are given rigorously. The numerical experiments are carried out to validate the theoretical results of this paper. It is pointed out that the proposed method allows us to choose a relative coarse grid and solve problems in parallel, and therefore it can greatly save computer memory storage and CPU time. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/j.cam.2020.113024 |