Topology optimization based on deep representation learning (DRL) for compliance and stress-constrained design
This paper proposed a new topology optimization method based on geometry deep learning. The density distribution in design domain is described by deep neural networks. Compared to traditional density-based method, using geometry deep learning method to describe the density distribution function can...
Gespeichert in:
Veröffentlicht in: | Computational mechanics 2020-08, Vol.66 (2), p.449-469 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 469 |
---|---|
container_issue | 2 |
container_start_page | 449 |
container_title | Computational mechanics |
container_volume | 66 |
creator | Deng, Hao To, Albert C. |
description | This paper proposed a new topology optimization method based on geometry deep learning. The density distribution in design domain is described by deep neural networks. Compared to traditional density-based method, using geometry deep learning method to describe the density distribution function can guarantee the smoothness of the boundary and effectively overcome the checkerboard phenomenon. The design variables can be reduced phenomenally based on deep learning representation method. The numerical results for three different kernels including the Gaussian, Tansig, and Tribas are compared. The structural complexity can be directly controlled through the architectures of the neural networks, and minimum length is also controllable for the Gaussian kernel. Several 2-D and 3-D numerical examples are demonstrated in detail to demonstrate the effectiveness of proposed method from minimum compliance to stress-constrained problems. |
doi_str_mv | 10.1007/s00466-020-01859-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2424343610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A629754842</galeid><sourcerecordid>A629754842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-19bcb96ccda4bbd0af0beab598f748fa196d8569d0a3aa30f5a647d87ff55d883</originalsourceid><addsrcrecordid>eNp9kUFrFjEQhoNU8Gv1D3gKeNFD6mQ3yWaPpVYrfCBIew7ZZLKk7JesyfZQf32jK3grOWSYeZ-ZF15C3nO45ADD5woglGLQAQOu5cjkK3Lgou8YjJ04Iwfgg2aDGuQbcl7rAwCXupcHku7ympc8P9G8bvEUf9st5kQnW9HTVnjElRZcC1ZM2z5c0JYU00w_fvl5_ERDLtTl07pEmxxSmzytW9NX5nJqlY2p7fJY45zektfBLhXf_fsvyP3Xm7vrW3b88e379dWROdGJjfFxctOonPNWTJMHG2BCO8lRh0HoYPmovJZqbJPe2h6CtEoMXg8hSOm17i_Ih33vWvKvR6ybeciPJbWTpmsXetErDk11uatmu6CJKeTm1rXn8RSbeQyx9a9UNw5SaNE1oNsBV3KtBYNZSzzZ8mQ4mD9BmD0I04Iwf4MwskH9DtUmTjOW_15eoJ4BPTKNfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424343610</pqid></control><display><type>article</type><title>Topology optimization based on deep representation learning (DRL) for compliance and stress-constrained design</title><source>SpringerLink Journals</source><creator>Deng, Hao ; To, Albert C.</creator><creatorcontrib>Deng, Hao ; To, Albert C.</creatorcontrib><description>This paper proposed a new topology optimization method based on geometry deep learning. The density distribution in design domain is described by deep neural networks. Compared to traditional density-based method, using geometry deep learning method to describe the density distribution function can guarantee the smoothness of the boundary and effectively overcome the checkerboard phenomenon. The design variables can be reduced phenomenally based on deep learning representation method. The numerical results for three different kernels including the Gaussian, Tansig, and Tribas are compared. The structural complexity can be directly controlled through the architectures of the neural networks, and minimum length is also controllable for the Gaussian kernel. Several 2-D and 3-D numerical examples are demonstrated in detail to demonstrate the effectiveness of proposed method from minimum compliance to stress-constrained problems.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-020-01859-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial neural networks ; Classical and Continuum Physics ; Comparative analysis ; Computational Science and Engineering ; Deep learning ; Density distribution ; Distribution (Probability theory) ; Distribution functions ; Engineering ; Kernels ; Machine learning ; Neural networks ; Original Paper ; Representations ; Smoothness ; Stability ; Theoretical and Applied Mechanics ; Topology optimization</subject><ispartof>Computational mechanics, 2020-08, Vol.66 (2), p.449-469</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-19bcb96ccda4bbd0af0beab598f748fa196d8569d0a3aa30f5a647d87ff55d883</citedby><cites>FETCH-LOGICAL-c424t-19bcb96ccda4bbd0af0beab598f748fa196d8569d0a3aa30f5a647d87ff55d883</cites><orcidid>0000-0003-2893-8378</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00466-020-01859-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00466-020-01859-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Deng, Hao</creatorcontrib><creatorcontrib>To, Albert C.</creatorcontrib><title>Topology optimization based on deep representation learning (DRL) for compliance and stress-constrained design</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>This paper proposed a new topology optimization method based on geometry deep learning. The density distribution in design domain is described by deep neural networks. Compared to traditional density-based method, using geometry deep learning method to describe the density distribution function can guarantee the smoothness of the boundary and effectively overcome the checkerboard phenomenon. The design variables can be reduced phenomenally based on deep learning representation method. The numerical results for three different kernels including the Gaussian, Tansig, and Tribas are compared. The structural complexity can be directly controlled through the architectures of the neural networks, and minimum length is also controllable for the Gaussian kernel. Several 2-D and 3-D numerical examples are demonstrated in detail to demonstrate the effectiveness of proposed method from minimum compliance to stress-constrained problems.</description><subject>Artificial neural networks</subject><subject>Classical and Continuum Physics</subject><subject>Comparative analysis</subject><subject>Computational Science and Engineering</subject><subject>Deep learning</subject><subject>Density distribution</subject><subject>Distribution (Probability theory)</subject><subject>Distribution functions</subject><subject>Engineering</subject><subject>Kernels</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Representations</subject><subject>Smoothness</subject><subject>Stability</subject><subject>Theoretical and Applied Mechanics</subject><subject>Topology optimization</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kUFrFjEQhoNU8Gv1D3gKeNFD6mQ3yWaPpVYrfCBIew7ZZLKk7JesyfZQf32jK3grOWSYeZ-ZF15C3nO45ADD5woglGLQAQOu5cjkK3Lgou8YjJ04Iwfgg2aDGuQbcl7rAwCXupcHku7ympc8P9G8bvEUf9st5kQnW9HTVnjElRZcC1ZM2z5c0JYU00w_fvl5_ERDLtTl07pEmxxSmzytW9NX5nJqlY2p7fJY45zektfBLhXf_fsvyP3Xm7vrW3b88e379dWROdGJjfFxctOonPNWTJMHG2BCO8lRh0HoYPmovJZqbJPe2h6CtEoMXg8hSOm17i_Ih33vWvKvR6ybeciPJbWTpmsXetErDk11uatmu6CJKeTm1rXn8RSbeQyx9a9UNw5SaNE1oNsBV3KtBYNZSzzZ8mQ4mD9BmD0I04Iwf4MwskH9DtUmTjOW_15eoJ4BPTKNfQ</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Deng, Hao</creator><creator>To, Albert C.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-2893-8378</orcidid></search><sort><creationdate>20200801</creationdate><title>Topology optimization based on deep representation learning (DRL) for compliance and stress-constrained design</title><author>Deng, Hao ; To, Albert C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-19bcb96ccda4bbd0af0beab598f748fa196d8569d0a3aa30f5a647d87ff55d883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Classical and Continuum Physics</topic><topic>Comparative analysis</topic><topic>Computational Science and Engineering</topic><topic>Deep learning</topic><topic>Density distribution</topic><topic>Distribution (Probability theory)</topic><topic>Distribution functions</topic><topic>Engineering</topic><topic>Kernels</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Representations</topic><topic>Smoothness</topic><topic>Stability</topic><topic>Theoretical and Applied Mechanics</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Hao</creatorcontrib><creatorcontrib>To, Albert C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Hao</au><au>To, Albert C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topology optimization based on deep representation learning (DRL) for compliance and stress-constrained design</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>66</volume><issue>2</issue><spage>449</spage><epage>469</epage><pages>449-469</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>This paper proposed a new topology optimization method based on geometry deep learning. The density distribution in design domain is described by deep neural networks. Compared to traditional density-based method, using geometry deep learning method to describe the density distribution function can guarantee the smoothness of the boundary and effectively overcome the checkerboard phenomenon. The design variables can be reduced phenomenally based on deep learning representation method. The numerical results for three different kernels including the Gaussian, Tansig, and Tribas are compared. The structural complexity can be directly controlled through the architectures of the neural networks, and minimum length is also controllable for the Gaussian kernel. Several 2-D and 3-D numerical examples are demonstrated in detail to demonstrate the effectiveness of proposed method from minimum compliance to stress-constrained problems.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00466-020-01859-5</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-2893-8378</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-7675 |
ispartof | Computational mechanics, 2020-08, Vol.66 (2), p.449-469 |
issn | 0178-7675 1432-0924 |
language | eng |
recordid | cdi_proquest_journals_2424343610 |
source | SpringerLink Journals |
subjects | Artificial neural networks Classical and Continuum Physics Comparative analysis Computational Science and Engineering Deep learning Density distribution Distribution (Probability theory) Distribution functions Engineering Kernels Machine learning Neural networks Original Paper Representations Smoothness Stability Theoretical and Applied Mechanics Topology optimization |
title | Topology optimization based on deep representation learning (DRL) for compliance and stress-constrained design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T03%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topology%20optimization%20based%20on%20deep%20representation%20learning%20(DRL)%20for%20compliance%20and%20stress-constrained%20design&rft.jtitle=Computational%20mechanics&rft.au=Deng,%20Hao&rft.date=2020-08-01&rft.volume=66&rft.issue=2&rft.spage=449&rft.epage=469&rft.pages=449-469&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-020-01859-5&rft_dat=%3Cgale_proqu%3EA629754842%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424343610&rft_id=info:pmid/&rft_galeid=A629754842&rfr_iscdi=true |