Topology optimization based on deep representation learning (DRL) for compliance and stress-constrained design

This paper proposed a new topology optimization method based on geometry deep learning. The density distribution in design domain is described by deep neural networks. Compared to traditional density-based method, using geometry deep learning method to describe the density distribution function can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mechanics 2020-08, Vol.66 (2), p.449-469
Hauptverfasser: Deng, Hao, To, Albert C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 469
container_issue 2
container_start_page 449
container_title Computational mechanics
container_volume 66
creator Deng, Hao
To, Albert C.
description This paper proposed a new topology optimization method based on geometry deep learning. The density distribution in design domain is described by deep neural networks. Compared to traditional density-based method, using geometry deep learning method to describe the density distribution function can guarantee the smoothness of the boundary and effectively overcome the checkerboard phenomenon. The design variables can be reduced phenomenally based on deep learning representation method. The numerical results for three different kernels including the Gaussian, Tansig, and Tribas are compared. The structural complexity can be directly controlled through the architectures of the neural networks, and minimum length is also controllable for the Gaussian kernel. Several 2-D and 3-D numerical examples are demonstrated in detail to demonstrate the effectiveness of proposed method from minimum compliance to stress-constrained problems.
doi_str_mv 10.1007/s00466-020-01859-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2424343610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A629754842</galeid><sourcerecordid>A629754842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-19bcb96ccda4bbd0af0beab598f748fa196d8569d0a3aa30f5a647d87ff55d883</originalsourceid><addsrcrecordid>eNp9kUFrFjEQhoNU8Gv1D3gKeNFD6mQ3yWaPpVYrfCBIew7ZZLKk7JesyfZQf32jK3grOWSYeZ-ZF15C3nO45ADD5woglGLQAQOu5cjkK3Lgou8YjJ04Iwfgg2aDGuQbcl7rAwCXupcHku7ympc8P9G8bvEUf9st5kQnW9HTVnjElRZcC1ZM2z5c0JYU00w_fvl5_ERDLtTl07pEmxxSmzytW9NX5nJqlY2p7fJY45zektfBLhXf_fsvyP3Xm7vrW3b88e379dWROdGJjfFxctOonPNWTJMHG2BCO8lRh0HoYPmovJZqbJPe2h6CtEoMXg8hSOm17i_Ih33vWvKvR6ybeciPJbWTpmsXetErDk11uatmu6CJKeTm1rXn8RSbeQyx9a9UNw5SaNE1oNsBV3KtBYNZSzzZ8mQ4mD9BmD0I04Iwf4MwskH9DtUmTjOW_15eoJ4BPTKNfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424343610</pqid></control><display><type>article</type><title>Topology optimization based on deep representation learning (DRL) for compliance and stress-constrained design</title><source>SpringerLink Journals</source><creator>Deng, Hao ; To, Albert C.</creator><creatorcontrib>Deng, Hao ; To, Albert C.</creatorcontrib><description>This paper proposed a new topology optimization method based on geometry deep learning. The density distribution in design domain is described by deep neural networks. Compared to traditional density-based method, using geometry deep learning method to describe the density distribution function can guarantee the smoothness of the boundary and effectively overcome the checkerboard phenomenon. The design variables can be reduced phenomenally based on deep learning representation method. The numerical results for three different kernels including the Gaussian, Tansig, and Tribas are compared. The structural complexity can be directly controlled through the architectures of the neural networks, and minimum length is also controllable for the Gaussian kernel. Several 2-D and 3-D numerical examples are demonstrated in detail to demonstrate the effectiveness of proposed method from minimum compliance to stress-constrained problems.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-020-01859-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial neural networks ; Classical and Continuum Physics ; Comparative analysis ; Computational Science and Engineering ; Deep learning ; Density distribution ; Distribution (Probability theory) ; Distribution functions ; Engineering ; Kernels ; Machine learning ; Neural networks ; Original Paper ; Representations ; Smoothness ; Stability ; Theoretical and Applied Mechanics ; Topology optimization</subject><ispartof>Computational mechanics, 2020-08, Vol.66 (2), p.449-469</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-19bcb96ccda4bbd0af0beab598f748fa196d8569d0a3aa30f5a647d87ff55d883</citedby><cites>FETCH-LOGICAL-c424t-19bcb96ccda4bbd0af0beab598f748fa196d8569d0a3aa30f5a647d87ff55d883</cites><orcidid>0000-0003-2893-8378</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00466-020-01859-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00466-020-01859-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Deng, Hao</creatorcontrib><creatorcontrib>To, Albert C.</creatorcontrib><title>Topology optimization based on deep representation learning (DRL) for compliance and stress-constrained design</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>This paper proposed a new topology optimization method based on geometry deep learning. The density distribution in design domain is described by deep neural networks. Compared to traditional density-based method, using geometry deep learning method to describe the density distribution function can guarantee the smoothness of the boundary and effectively overcome the checkerboard phenomenon. The design variables can be reduced phenomenally based on deep learning representation method. The numerical results for three different kernels including the Gaussian, Tansig, and Tribas are compared. The structural complexity can be directly controlled through the architectures of the neural networks, and minimum length is also controllable for the Gaussian kernel. Several 2-D and 3-D numerical examples are demonstrated in detail to demonstrate the effectiveness of proposed method from minimum compliance to stress-constrained problems.</description><subject>Artificial neural networks</subject><subject>Classical and Continuum Physics</subject><subject>Comparative analysis</subject><subject>Computational Science and Engineering</subject><subject>Deep learning</subject><subject>Density distribution</subject><subject>Distribution (Probability theory)</subject><subject>Distribution functions</subject><subject>Engineering</subject><subject>Kernels</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Representations</subject><subject>Smoothness</subject><subject>Stability</subject><subject>Theoretical and Applied Mechanics</subject><subject>Topology optimization</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kUFrFjEQhoNU8Gv1D3gKeNFD6mQ3yWaPpVYrfCBIew7ZZLKk7JesyfZQf32jK3grOWSYeZ-ZF15C3nO45ADD5woglGLQAQOu5cjkK3Lgou8YjJ04Iwfgg2aDGuQbcl7rAwCXupcHku7ympc8P9G8bvEUf9st5kQnW9HTVnjElRZcC1ZM2z5c0JYU00w_fvl5_ERDLtTl07pEmxxSmzytW9NX5nJqlY2p7fJY45zektfBLhXf_fsvyP3Xm7vrW3b88e379dWROdGJjfFxctOonPNWTJMHG2BCO8lRh0HoYPmovJZqbJPe2h6CtEoMXg8hSOm17i_Ih33vWvKvR6ybeciPJbWTpmsXetErDk11uatmu6CJKeTm1rXn8RSbeQyx9a9UNw5SaNE1oNsBV3KtBYNZSzzZ8mQ4mD9BmD0I04Iwf4MwskH9DtUmTjOW_15eoJ4BPTKNfQ</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Deng, Hao</creator><creator>To, Albert C.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-2893-8378</orcidid></search><sort><creationdate>20200801</creationdate><title>Topology optimization based on deep representation learning (DRL) for compliance and stress-constrained design</title><author>Deng, Hao ; To, Albert C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-19bcb96ccda4bbd0af0beab598f748fa196d8569d0a3aa30f5a647d87ff55d883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Classical and Continuum Physics</topic><topic>Comparative analysis</topic><topic>Computational Science and Engineering</topic><topic>Deep learning</topic><topic>Density distribution</topic><topic>Distribution (Probability theory)</topic><topic>Distribution functions</topic><topic>Engineering</topic><topic>Kernels</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Representations</topic><topic>Smoothness</topic><topic>Stability</topic><topic>Theoretical and Applied Mechanics</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Hao</creatorcontrib><creatorcontrib>To, Albert C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Hao</au><au>To, Albert C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topology optimization based on deep representation learning (DRL) for compliance and stress-constrained design</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>66</volume><issue>2</issue><spage>449</spage><epage>469</epage><pages>449-469</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>This paper proposed a new topology optimization method based on geometry deep learning. The density distribution in design domain is described by deep neural networks. Compared to traditional density-based method, using geometry deep learning method to describe the density distribution function can guarantee the smoothness of the boundary and effectively overcome the checkerboard phenomenon. The design variables can be reduced phenomenally based on deep learning representation method. The numerical results for three different kernels including the Gaussian, Tansig, and Tribas are compared. The structural complexity can be directly controlled through the architectures of the neural networks, and minimum length is also controllable for the Gaussian kernel. Several 2-D and 3-D numerical examples are demonstrated in detail to demonstrate the effectiveness of proposed method from minimum compliance to stress-constrained problems.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00466-020-01859-5</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-2893-8378</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 2020-08, Vol.66 (2), p.449-469
issn 0178-7675
1432-0924
language eng
recordid cdi_proquest_journals_2424343610
source SpringerLink Journals
subjects Artificial neural networks
Classical and Continuum Physics
Comparative analysis
Computational Science and Engineering
Deep learning
Density distribution
Distribution (Probability theory)
Distribution functions
Engineering
Kernels
Machine learning
Neural networks
Original Paper
Representations
Smoothness
Stability
Theoretical and Applied Mechanics
Topology optimization
title Topology optimization based on deep representation learning (DRL) for compliance and stress-constrained design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T03%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topology%20optimization%20based%20on%20deep%20representation%20learning%20(DRL)%20for%20compliance%20and%20stress-constrained%20design&rft.jtitle=Computational%20mechanics&rft.au=Deng,%20Hao&rft.date=2020-08-01&rft.volume=66&rft.issue=2&rft.spage=449&rft.epage=469&rft.pages=449-469&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-020-01859-5&rft_dat=%3Cgale_proqu%3EA629754842%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424343610&rft_id=info:pmid/&rft_galeid=A629754842&rfr_iscdi=true