Elliptic shape prior for object 2D-3D pose estimation using circular feature
Many objects in real world have circular feature. It is a difficult task to obtain the 2D-3D pose estimation using circular feature in challenging scenarios. This paper proposes a method to incorporate elliptic shape prior for object pose estimation using a level set method. The relationship between...
Gespeichert in:
Veröffentlicht in: | EURASIP journal on advances in signal processing 2020-07, Vol.2020 (1), p.1-19, Article 34 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | EURASIP journal on advances in signal processing |
container_volume | 2020 |
creator | Li, Cui Chen, Derong Gong, Jiulu Wu, Yangyu |
description | Many objects in real world have circular feature. It is a difficult task to obtain the 2D-3D pose estimation using circular feature in challenging scenarios. This paper proposes a method to incorporate elliptic shape prior for object pose estimation using a level set method. The relationship between the projection of the circular feature of a 3D object and the signed distance function corresponding to it is analyzed to yield a 2D elliptic shape prior. The method employs the combination of the grayscale histogram, the intensities of edge, and the smoothness distribution as main image feature descriptors that define the image statistical measure model. The elliptic shape prior combined with the image statistical measure energy model drives the elliptic shape contour to the projection of the circular feature of the 3D object with the current pose into the image plane. These works effectively reduce the impacts of the challenging scenarios on the pose estimate results. In addition, the method utilizes particle filters that take into account the motion dynamics of the object among scene frames, and this work provides the robust method for object 2D-3D pose estimation using circular feature in a challenging environment. Various numerical experiments are illustrated to show the performance and advantages of the proposed method. |
doi_str_mv | 10.1186/s13634-020-00691-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_webofscience_primary_000549589300001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A704305392</galeid><doaj_id>oai_doaj_org_article_e57fdb5cda4b4b61b56fc5995e0bc41b</doaj_id><sourcerecordid>A704305392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-d673413d85bbe6961214bbd969284d259e0a38ead01371c7b5ca791149f828963</originalsourceid><addsrcrecordid>eNqNUU2LFDEUbETBdfUPeGrwKL2b706Oy-yuLgx40XNI0q_HDD2dNkkj_nvfTsvqSZbwyONRVVRRTfOekitKtboulCsuOsJIR4gytFMvmguqdN8pqsnLf_bXzZtSjoRIxQi7aPZ30xSXGkNbvrsF2iXHlNsRJ_kjhNqy247ftksq0EKp8eRqTHO7ljgf2hBzWCeHeHB1zfC2eTW6qcC7P_9l8-3-7uvuc7f_8ulhd7PvglC6doPquaB80NJ7UEZRRoX3g1GGaTEwaYA4rsENhPKeht7L4HpDqTCjZtooftk8bLpDckeLlk8u_7LJRXs-pHywLmOmCSzIfhxQYHDCC6-ol2oM0hgJxAdBPWp92LSWnH6sGNEe05pntG-ZYEL2RFOBqKsNdXAoGucx1ewCvgFOMaQZxoj3m54ITiQ3DAlsI4ScSskwPtmkxD5WZrfKLFZmz5XZx1x6I_0En8YSIswBnogESxNGasNxI3QX67mLXVrnitSPz6cimm_ogoj5APlv6P_Y-w1pgLf1</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424570814</pqid></control><display><type>article</type><title>Elliptic shape prior for object 2D-3D pose estimation using circular feature</title><source>Springer Open Access</source><source>Springer Online Journals</source><source>Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Alma/SFX Local Collection</source><creator>Li, Cui ; Chen, Derong ; Gong, Jiulu ; Wu, Yangyu</creator><creatorcontrib>Li, Cui ; Chen, Derong ; Gong, Jiulu ; Wu, Yangyu</creatorcontrib><description>Many objects in real world have circular feature. It is a difficult task to obtain the 2D-3D pose estimation using circular feature in challenging scenarios. This paper proposes a method to incorporate elliptic shape prior for object pose estimation using a level set method. The relationship between the projection of the circular feature of a 3D object and the signed distance function corresponding to it is analyzed to yield a 2D elliptic shape prior. The method employs the combination of the grayscale histogram, the intensities of edge, and the smoothness distribution as main image feature descriptors that define the image statistical measure model. The elliptic shape prior combined with the image statistical measure energy model drives the elliptic shape contour to the projection of the circular feature of the 3D object with the current pose into the image plane. These works effectively reduce the impacts of the challenging scenarios on the pose estimate results. In addition, the method utilizes particle filters that take into account the motion dynamics of the object among scene frames, and this work provides the robust method for object 2D-3D pose estimation using circular feature in a challenging environment. Various numerical experiments are illustrated to show the performance and advantages of the proposed method.</description><identifier>ISSN: 1687-6180</identifier><identifier>ISSN: 1687-6172</identifier><identifier>EISSN: 1687-6180</identifier><identifier>DOI: 10.1186/s13634-020-00691-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Circular feature ; Circularity ; Elliptic shape prior ; Engineering ; Engineering, Electrical & Electronic ; Histograms ; Image statistical property ; Pose estimation ; Quantum Information Technology ; Robustness (mathematics) ; Science & Technology ; Signal,Image and Speech Processing ; Smoothness ; Spintronics ; Technology ; Two dimensional analysis ; Visual human motion understanding in the Wild</subject><ispartof>EURASIP journal on advances in signal processing, 2020-07, Vol.2020 (1), p.1-19, Article 34</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000549589300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c468t-d673413d85bbe6961214bbd969284d259e0a38ead01371c7b5ca791149f828963</citedby><cites>FETCH-LOGICAL-c468t-d673413d85bbe6961214bbd969284d259e0a38ead01371c7b5ca791149f828963</cites><orcidid>0000-0002-7423-2088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1186/s13634-020-00691-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1186/s13634-020-00691-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,2115,27929,27930,28253,41125,41493,42194,42562,51324,51581</link.rule.ids></links><search><creatorcontrib>Li, Cui</creatorcontrib><creatorcontrib>Chen, Derong</creatorcontrib><creatorcontrib>Gong, Jiulu</creatorcontrib><creatorcontrib>Wu, Yangyu</creatorcontrib><title>Elliptic shape prior for object 2D-3D pose estimation using circular feature</title><title>EURASIP journal on advances in signal processing</title><addtitle>EURASIP J. Adv. Signal Process</addtitle><addtitle>EURASIP J ADV SIG PR</addtitle><description>Many objects in real world have circular feature. It is a difficult task to obtain the 2D-3D pose estimation using circular feature in challenging scenarios. This paper proposes a method to incorporate elliptic shape prior for object pose estimation using a level set method. The relationship between the projection of the circular feature of a 3D object and the signed distance function corresponding to it is analyzed to yield a 2D elliptic shape prior. The method employs the combination of the grayscale histogram, the intensities of edge, and the smoothness distribution as main image feature descriptors that define the image statistical measure model. The elliptic shape prior combined with the image statistical measure energy model drives the elliptic shape contour to the projection of the circular feature of the 3D object with the current pose into the image plane. These works effectively reduce the impacts of the challenging scenarios on the pose estimate results. In addition, the method utilizes particle filters that take into account the motion dynamics of the object among scene frames, and this work provides the robust method for object 2D-3D pose estimation using circular feature in a challenging environment. Various numerical experiments are illustrated to show the performance and advantages of the proposed method.</description><subject>Circular feature</subject><subject>Circularity</subject><subject>Elliptic shape prior</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Histograms</subject><subject>Image statistical property</subject><subject>Pose estimation</subject><subject>Quantum Information Technology</subject><subject>Robustness (mathematics)</subject><subject>Science & Technology</subject><subject>Signal,Image and Speech Processing</subject><subject>Smoothness</subject><subject>Spintronics</subject><subject>Technology</subject><subject>Two dimensional analysis</subject><subject>Visual human motion understanding in the Wild</subject><issn>1687-6180</issn><issn>1687-6172</issn><issn>1687-6180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNUU2LFDEUbETBdfUPeGrwKL2b706Oy-yuLgx40XNI0q_HDD2dNkkj_nvfTsvqSZbwyONRVVRRTfOekitKtboulCsuOsJIR4gytFMvmguqdN8pqsnLf_bXzZtSjoRIxQi7aPZ30xSXGkNbvrsF2iXHlNsRJ_kjhNqy247ftksq0EKp8eRqTHO7ljgf2hBzWCeHeHB1zfC2eTW6qcC7P_9l8-3-7uvuc7f_8ulhd7PvglC6doPquaB80NJ7UEZRRoX3g1GGaTEwaYA4rsENhPKeht7L4HpDqTCjZtooftk8bLpDckeLlk8u_7LJRXs-pHywLmOmCSzIfhxQYHDCC6-ol2oM0hgJxAdBPWp92LSWnH6sGNEe05pntG-ZYEL2RFOBqKsNdXAoGucx1ewCvgFOMaQZxoj3m54ITiQ3DAlsI4ScSskwPtmkxD5WZrfKLFZmz5XZx1x6I_0En8YSIswBnogESxNGasNxI3QX67mLXVrnitSPz6cimm_ogoj5APlv6P_Y-w1pgLf1</recordid><startdate>20200717</startdate><enddate>20200717</enddate><creator>Li, Cui</creator><creator>Chen, Derong</creator><creator>Gong, Jiulu</creator><creator>Wu, Yangyu</creator><general>Springer International Publishing</general><general>Springer Nature</general><general>Springer</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7423-2088</orcidid></search><sort><creationdate>20200717</creationdate><title>Elliptic shape prior for object 2D-3D pose estimation using circular feature</title><author>Li, Cui ; Chen, Derong ; Gong, Jiulu ; Wu, Yangyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-d673413d85bbe6961214bbd969284d259e0a38ead01371c7b5ca791149f828963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Circular feature</topic><topic>Circularity</topic><topic>Elliptic shape prior</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Histograms</topic><topic>Image statistical property</topic><topic>Pose estimation</topic><topic>Quantum Information Technology</topic><topic>Robustness (mathematics)</topic><topic>Science & Technology</topic><topic>Signal,Image and Speech Processing</topic><topic>Smoothness</topic><topic>Spintronics</topic><topic>Technology</topic><topic>Two dimensional analysis</topic><topic>Visual human motion understanding in the Wild</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Cui</creatorcontrib><creatorcontrib>Chen, Derong</creatorcontrib><creatorcontrib>Gong, Jiulu</creatorcontrib><creatorcontrib>Wu, Yangyu</creatorcontrib><collection>Springer Open Access</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>EURASIP journal on advances in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Cui</au><au>Chen, Derong</au><au>Gong, Jiulu</au><au>Wu, Yangyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elliptic shape prior for object 2D-3D pose estimation using circular feature</atitle><jtitle>EURASIP journal on advances in signal processing</jtitle><stitle>EURASIP J. Adv. Signal Process</stitle><stitle>EURASIP J ADV SIG PR</stitle><date>2020-07-17</date><risdate>2020</risdate><volume>2020</volume><issue>1</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><artnum>34</artnum><issn>1687-6180</issn><issn>1687-6172</issn><eissn>1687-6180</eissn><abstract>Many objects in real world have circular feature. It is a difficult task to obtain the 2D-3D pose estimation using circular feature in challenging scenarios. This paper proposes a method to incorporate elliptic shape prior for object pose estimation using a level set method. The relationship between the projection of the circular feature of a 3D object and the signed distance function corresponding to it is analyzed to yield a 2D elliptic shape prior. The method employs the combination of the grayscale histogram, the intensities of edge, and the smoothness distribution as main image feature descriptors that define the image statistical measure model. The elliptic shape prior combined with the image statistical measure energy model drives the elliptic shape contour to the projection of the circular feature of the 3D object with the current pose into the image plane. These works effectively reduce the impacts of the challenging scenarios on the pose estimate results. In addition, the method utilizes particle filters that take into account the motion dynamics of the object among scene frames, and this work provides the robust method for object 2D-3D pose estimation using circular feature in a challenging environment. Various numerical experiments are illustrated to show the performance and advantages of the proposed method.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13634-020-00691-6</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-7423-2088</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-6180 |
ispartof | EURASIP journal on advances in signal processing, 2020-07, Vol.2020 (1), p.1-19, Article 34 |
issn | 1687-6180 1687-6172 1687-6180 |
language | eng |
recordid | cdi_webofscience_primary_000549589300001CitationCount |
source | Springer Open Access; Springer Online Journals; Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection |
subjects | Circular feature Circularity Elliptic shape prior Engineering Engineering, Electrical & Electronic Histograms Image statistical property Pose estimation Quantum Information Technology Robustness (mathematics) Science & Technology Signal,Image and Speech Processing Smoothness Spintronics Technology Two dimensional analysis Visual human motion understanding in the Wild |
title | Elliptic shape prior for object 2D-3D pose estimation using circular feature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T16%3A29%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elliptic%20shape%20prior%20for%20object%202D-3D%20pose%20estimation%20using%20circular%20feature&rft.jtitle=EURASIP%20journal%20on%20advances%20in%20signal%20processing&rft.au=Li,%20Cui&rft.date=2020-07-17&rft.volume=2020&rft.issue=1&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.artnum=34&rft.issn=1687-6180&rft.eissn=1687-6180&rft_id=info:doi/10.1186/s13634-020-00691-6&rft_dat=%3Cgale_webof%3EA704305392%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424570814&rft_id=info:pmid/&rft_galeid=A704305392&rft_doaj_id=oai_doaj_org_article_e57fdb5cda4b4b61b56fc5995e0bc41b&rfr_iscdi=true |