Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin
Erythropoietin (EPO), named after its role in hematopoiesis, is also expressed in mammalian brain. In clinical settings, recombinant EPO treatment has revealed a remarkable improvement of cognition, but underlying mechanisms have remained obscure. Here, we show with a novel line of reporter mice tha...
Gespeichert in:
Veröffentlicht in: | Nature communications 2020-03, Vol.11 (1), p.1313-12, Article 1313 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 1 |
container_start_page | 1313 |
container_title | Nature communications |
container_volume | 11 |
creator | Wakhloo, Debia Scharkowski, Franziska Curto, Yasmina Javed Butt, Umer Bansal, Vikas Steixner-Kumar, Agnes A. Wüstefeld, Liane Rajput, Ashish Arinrad, Sahab Zillmann, Matthias R. Seelbach, Anna Hassouna, Imam Schneider, Katharina Qadir Ibrahim, Abdul Werner, Hauke B. Martens, Henrik Miskowiak, Kamilla Wojcik, Sonja M. Bonn, Stefan Nacher, Juan Nave, Klaus-Armin Ehrenreich, Hannelore |
description | Erythropoietin (EPO), named after its role in hematopoiesis, is also expressed in mammalian brain. In clinical settings, recombinant EPO treatment has revealed a remarkable improvement of cognition, but underlying mechanisms have remained obscure. Here, we show with a novel line of reporter mice that cognitive challenge induces local/endogenous hypoxia in hippocampal pyramidal neurons, hence enhancing expression of EPO and EPO receptor (EPOR). High-dose EPO administration, amplifying auto/paracrine EPO/EPOR signaling, prompts the emergence of new CA1 neurons and enhanced dendritic spine densities. Single-cell sequencing reveals rapid increase in newly differentiating neurons. Importantly, improved performance on complex running wheels after EPO is imitated by exposure to mild exogenous/inspiratory hypoxia. All these effects depend on neuronal expression of the
Epor
gene. This suggests a model of neuroplasticity in form of a fundamental regulatory circle, in which neuronal networks—challenged by cognitive tasks—drift into transient hypoxia, thereby triggering neuronal EPO/EPOR expression.
EPO treatment improves cognition, but underlying mechanisms were unknown. Here the authors describe a regulatory loop in which brain networks challenged by cognitive tasks drift into functional hypoxia that drives—via neuronal EPO synthesis—neurodifferentiation and dendritic spine formation. |
doi_str_mv | 10.1038/s41467-020-15041-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9d32af3f067e4d66a0725b72c12bd117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9d32af3f067e4d66a0725b72c12bd117</doaj_id><sourcerecordid>2375479905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c655t-63cc3b164bdb750d453ccdaa038e51a71388e1b851954496f7401b37e0dca4703</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EolXpH-CAInEO9fgzuVRCFQuVKnEAzpa_sutVam_tZMX-e9xNPy_44tHMO8-M_SL0EfAXwLS7KAyYkC0muAWOGbTwBp2SYyAJffsiPkHnpWxxPbSHjrH36IQS4IRCd4p-reZop5CiHpvNYZf-Bt24HPa-NNHPOe1GXaZgw3RodHRLbu2jL6E0-6o1WYfY-HyYNlWcgp9C_IDeDXos_vzhPkN_Vt9-X_1ob35-v776etNawfnUCmotNSCYcUZy7BivCad1fZ3noCXQrvNgOg49Z6wXg2QYDJUeO6uZxPQMXS9cl_RW7XK41fmgkg7qmEh5rXSuy49e9Y4SPdABC-mZE0JjSbiRxAIxDkBW1uXC2s3m1jvr45T1-Ar6uhLDRq3TXkksiJR9BXx-AOR0N_syqW2ac_3WogiVnMm-x7yqyKKyOZWS_fA0AbC691Utvqrqqzr6qqA2fXq521PLo4tVQBdBqaW49vl59n-w_wDQg678</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375479905</pqid></control><display><type>article</type><title>Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Wakhloo, Debia ; Scharkowski, Franziska ; Curto, Yasmina ; Javed Butt, Umer ; Bansal, Vikas ; Steixner-Kumar, Agnes A. ; Wüstefeld, Liane ; Rajput, Ashish ; Arinrad, Sahab ; Zillmann, Matthias R. ; Seelbach, Anna ; Hassouna, Imam ; Schneider, Katharina ; Qadir Ibrahim, Abdul ; Werner, Hauke B. ; Martens, Henrik ; Miskowiak, Kamilla ; Wojcik, Sonja M. ; Bonn, Stefan ; Nacher, Juan ; Nave, Klaus-Armin ; Ehrenreich, Hannelore</creator><creatorcontrib>Wakhloo, Debia ; Scharkowski, Franziska ; Curto, Yasmina ; Javed Butt, Umer ; Bansal, Vikas ; Steixner-Kumar, Agnes A. ; Wüstefeld, Liane ; Rajput, Ashish ; Arinrad, Sahab ; Zillmann, Matthias R. ; Seelbach, Anna ; Hassouna, Imam ; Schneider, Katharina ; Qadir Ibrahim, Abdul ; Werner, Hauke B. ; Martens, Henrik ; Miskowiak, Kamilla ; Wojcik, Sonja M. ; Bonn, Stefan ; Nacher, Juan ; Nave, Klaus-Armin ; Ehrenreich, Hannelore</creatorcontrib><description>Erythropoietin (EPO), named after its role in hematopoiesis, is also expressed in mammalian brain. In clinical settings, recombinant EPO treatment has revealed a remarkable improvement of cognition, but underlying mechanisms have remained obscure. Here, we show with a novel line of reporter mice that cognitive challenge induces local/endogenous hypoxia in hippocampal pyramidal neurons, hence enhancing expression of EPO and EPO receptor (EPOR). High-dose EPO administration, amplifying auto/paracrine EPO/EPOR signaling, prompts the emergence of new CA1 neurons and enhanced dendritic spine densities. Single-cell sequencing reveals rapid increase in newly differentiating neurons. Importantly, improved performance on complex running wheels after EPO is imitated by exposure to mild exogenous/inspiratory hypoxia. All these effects depend on neuronal expression of the
Epor
gene. This suggests a model of neuroplasticity in form of a fundamental regulatory circle, in which neuronal networks—challenged by cognitive tasks—drift into transient hypoxia, thereby triggering neuronal EPO/EPOR expression.
EPO treatment improves cognition, but underlying mechanisms were unknown. Here the authors describe a regulatory loop in which brain networks challenged by cognitive tasks drift into functional hypoxia that drives—via neuronal EPO synthesis—neurodifferentiation and dendritic spine formation.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-15041-1</identifier><identifier>PMID: 32152318</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/51 ; 14/19 ; 38/91 ; 631/378/2649 ; 631/378/87 ; 64/110 ; 64/60 ; 82/1 ; Animals ; Automotive wheels ; Brain ; Brain - metabolism ; Brain - physiopathology ; Cell Differentiation - drug effects ; Cognition ; Cognition & reasoning ; Cognition - drug effects ; Cognitive ability ; Cognitive tasks ; Dendritic plasticity ; Dendritic spines ; Dendritic Spines - drug effects ; Dendritic Spines - metabolism ; Drift ; Erythropoietin ; Erythropoietin - metabolism ; Erythropoietin - pharmacology ; Erythropoietin receptors ; Female ; Functional plasticity ; Gene Deletion ; Gene expression ; Hematopoiesis ; Hippocampal plasticity ; Hippocampus ; Humanities and Social Sciences ; Humans ; Hypoxia ; Hypoxia - metabolism ; Hypoxia - physiopathology ; Male ; Mice, Inbred C57BL ; Models, Neurological ; Motor Activity - drug effects ; multidisciplinary ; Neural networks ; Neurogenesis ; Neurogenesis - drug effects ; Neuronal Plasticity - drug effects ; Neurons ; Neuroplasticity ; Paracrine signalling ; Physical Conditioning, Animal ; Physical Endurance - drug effects ; Proto-Oncogene Proteins c-fos - metabolism ; Pyramidal cells ; Pyramidal Cells - drug effects ; Pyramidal Cells - metabolism ; Receptors, Erythropoietin - metabolism ; Respiration ; Science ; Science (multidisciplinary) ; Spine ; Transcriptome - drug effects ; Transcriptome - genetics</subject><ispartof>Nature communications, 2020-03, Vol.11 (1), p.1313-12, Article 1313</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c655t-63cc3b164bdb750d453ccdaa038e51a71388e1b851954496f7401b37e0dca4703</citedby><cites>FETCH-LOGICAL-c655t-63cc3b164bdb750d453ccdaa038e51a71388e1b851954496f7401b37e0dca4703</cites><orcidid>0000-0001-8371-5711 ; 0000-0002-5589-983X ; 0000-0002-7710-5738 ; 0000-0002-6741-8861 ; 0000-0001-8724-9666 ; 0000-0002-7083-1358 ; 0000-0002-0944-7226 ; 0000-0001-8087-360X ; 0000-0001-9112-4444 ; 0000-0002-4222-0947 ; 0000-0001-7913-2716 ; 0000-0002-7908-7369 ; 0000-0003-3288-857X ; 0000-0003-2572-1384 ; 0000-0003-3452-8500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062779/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062779/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32152318$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wakhloo, Debia</creatorcontrib><creatorcontrib>Scharkowski, Franziska</creatorcontrib><creatorcontrib>Curto, Yasmina</creatorcontrib><creatorcontrib>Javed Butt, Umer</creatorcontrib><creatorcontrib>Bansal, Vikas</creatorcontrib><creatorcontrib>Steixner-Kumar, Agnes A.</creatorcontrib><creatorcontrib>Wüstefeld, Liane</creatorcontrib><creatorcontrib>Rajput, Ashish</creatorcontrib><creatorcontrib>Arinrad, Sahab</creatorcontrib><creatorcontrib>Zillmann, Matthias R.</creatorcontrib><creatorcontrib>Seelbach, Anna</creatorcontrib><creatorcontrib>Hassouna, Imam</creatorcontrib><creatorcontrib>Schneider, Katharina</creatorcontrib><creatorcontrib>Qadir Ibrahim, Abdul</creatorcontrib><creatorcontrib>Werner, Hauke B.</creatorcontrib><creatorcontrib>Martens, Henrik</creatorcontrib><creatorcontrib>Miskowiak, Kamilla</creatorcontrib><creatorcontrib>Wojcik, Sonja M.</creatorcontrib><creatorcontrib>Bonn, Stefan</creatorcontrib><creatorcontrib>Nacher, Juan</creatorcontrib><creatorcontrib>Nave, Klaus-Armin</creatorcontrib><creatorcontrib>Ehrenreich, Hannelore</creatorcontrib><title>Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Erythropoietin (EPO), named after its role in hematopoiesis, is also expressed in mammalian brain. In clinical settings, recombinant EPO treatment has revealed a remarkable improvement of cognition, but underlying mechanisms have remained obscure. Here, we show with a novel line of reporter mice that cognitive challenge induces local/endogenous hypoxia in hippocampal pyramidal neurons, hence enhancing expression of EPO and EPO receptor (EPOR). High-dose EPO administration, amplifying auto/paracrine EPO/EPOR signaling, prompts the emergence of new CA1 neurons and enhanced dendritic spine densities. Single-cell sequencing reveals rapid increase in newly differentiating neurons. Importantly, improved performance on complex running wheels after EPO is imitated by exposure to mild exogenous/inspiratory hypoxia. All these effects depend on neuronal expression of the
Epor
gene. This suggests a model of neuroplasticity in form of a fundamental regulatory circle, in which neuronal networks—challenged by cognitive tasks—drift into transient hypoxia, thereby triggering neuronal EPO/EPOR expression.
EPO treatment improves cognition, but underlying mechanisms were unknown. Here the authors describe a regulatory loop in which brain networks challenged by cognitive tasks drift into functional hypoxia that drives—via neuronal EPO synthesis—neurodifferentiation and dendritic spine formation.</description><subject>13/51</subject><subject>14/19</subject><subject>38/91</subject><subject>631/378/2649</subject><subject>631/378/87</subject><subject>64/110</subject><subject>64/60</subject><subject>82/1</subject><subject>Animals</subject><subject>Automotive wheels</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Brain - physiopathology</subject><subject>Cell Differentiation - drug effects</subject><subject>Cognition</subject><subject>Cognition & reasoning</subject><subject>Cognition - drug effects</subject><subject>Cognitive ability</subject><subject>Cognitive tasks</subject><subject>Dendritic plasticity</subject><subject>Dendritic spines</subject><subject>Dendritic Spines - drug effects</subject><subject>Dendritic Spines - metabolism</subject><subject>Drift</subject><subject>Erythropoietin</subject><subject>Erythropoietin - metabolism</subject><subject>Erythropoietin - pharmacology</subject><subject>Erythropoietin receptors</subject><subject>Female</subject><subject>Functional plasticity</subject><subject>Gene Deletion</subject><subject>Gene expression</subject><subject>Hematopoiesis</subject><subject>Hippocampal plasticity</subject><subject>Hippocampus</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Hypoxia - metabolism</subject><subject>Hypoxia - physiopathology</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>Models, Neurological</subject><subject>Motor Activity - drug effects</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Neurogenesis</subject><subject>Neurogenesis - drug effects</subject><subject>Neuronal Plasticity - drug effects</subject><subject>Neurons</subject><subject>Neuroplasticity</subject><subject>Paracrine signalling</subject><subject>Physical Conditioning, Animal</subject><subject>Physical Endurance - drug effects</subject><subject>Proto-Oncogene Proteins c-fos - metabolism</subject><subject>Pyramidal cells</subject><subject>Pyramidal Cells - drug effects</subject><subject>Pyramidal Cells - metabolism</subject><subject>Receptors, Erythropoietin - metabolism</subject><subject>Respiration</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spine</subject><subject>Transcriptome - drug effects</subject><subject>Transcriptome - genetics</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhi0EolXpH-CAInEO9fgzuVRCFQuVKnEAzpa_sutVam_tZMX-e9xNPy_44tHMO8-M_SL0EfAXwLS7KAyYkC0muAWOGbTwBp2SYyAJffsiPkHnpWxxPbSHjrH36IQS4IRCd4p-reZop5CiHpvNYZf-Bt24HPa-NNHPOe1GXaZgw3RodHRLbu2jL6E0-6o1WYfY-HyYNlWcgp9C_IDeDXos_vzhPkN_Vt9-X_1ob35-v776etNawfnUCmotNSCYcUZy7BivCad1fZ3noCXQrvNgOg49Z6wXg2QYDJUeO6uZxPQMXS9cl_RW7XK41fmgkg7qmEh5rXSuy49e9Y4SPdABC-mZE0JjSbiRxAIxDkBW1uXC2s3m1jvr45T1-Ar6uhLDRq3TXkksiJR9BXx-AOR0N_syqW2ac_3WogiVnMm-x7yqyKKyOZWS_fA0AbC691Utvqrqqzr6qqA2fXq521PLo4tVQBdBqaW49vl59n-w_wDQg678</recordid><startdate>20200309</startdate><enddate>20200309</enddate><creator>Wakhloo, Debia</creator><creator>Scharkowski, Franziska</creator><creator>Curto, Yasmina</creator><creator>Javed Butt, Umer</creator><creator>Bansal, Vikas</creator><creator>Steixner-Kumar, Agnes A.</creator><creator>Wüstefeld, Liane</creator><creator>Rajput, Ashish</creator><creator>Arinrad, Sahab</creator><creator>Zillmann, Matthias R.</creator><creator>Seelbach, Anna</creator><creator>Hassouna, Imam</creator><creator>Schneider, Katharina</creator><creator>Qadir Ibrahim, Abdul</creator><creator>Werner, Hauke B.</creator><creator>Martens, Henrik</creator><creator>Miskowiak, Kamilla</creator><creator>Wojcik, Sonja M.</creator><creator>Bonn, Stefan</creator><creator>Nacher, Juan</creator><creator>Nave, Klaus-Armin</creator><creator>Ehrenreich, Hannelore</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8371-5711</orcidid><orcidid>https://orcid.org/0000-0002-5589-983X</orcidid><orcidid>https://orcid.org/0000-0002-7710-5738</orcidid><orcidid>https://orcid.org/0000-0002-6741-8861</orcidid><orcidid>https://orcid.org/0000-0001-8724-9666</orcidid><orcidid>https://orcid.org/0000-0002-7083-1358</orcidid><orcidid>https://orcid.org/0000-0002-0944-7226</orcidid><orcidid>https://orcid.org/0000-0001-8087-360X</orcidid><orcidid>https://orcid.org/0000-0001-9112-4444</orcidid><orcidid>https://orcid.org/0000-0002-4222-0947</orcidid><orcidid>https://orcid.org/0000-0001-7913-2716</orcidid><orcidid>https://orcid.org/0000-0002-7908-7369</orcidid><orcidid>https://orcid.org/0000-0003-3288-857X</orcidid><orcidid>https://orcid.org/0000-0003-2572-1384</orcidid><orcidid>https://orcid.org/0000-0003-3452-8500</orcidid></search><sort><creationdate>20200309</creationdate><title>Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin</title><author>Wakhloo, Debia ; Scharkowski, Franziska ; Curto, Yasmina ; Javed Butt, Umer ; Bansal, Vikas ; Steixner-Kumar, Agnes A. ; Wüstefeld, Liane ; Rajput, Ashish ; Arinrad, Sahab ; Zillmann, Matthias R. ; Seelbach, Anna ; Hassouna, Imam ; Schneider, Katharina ; Qadir Ibrahim, Abdul ; Werner, Hauke B. ; Martens, Henrik ; Miskowiak, Kamilla ; Wojcik, Sonja M. ; Bonn, Stefan ; Nacher, Juan ; Nave, Klaus-Armin ; Ehrenreich, Hannelore</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c655t-63cc3b164bdb750d453ccdaa038e51a71388e1b851954496f7401b37e0dca4703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/51</topic><topic>14/19</topic><topic>38/91</topic><topic>631/378/2649</topic><topic>631/378/87</topic><topic>64/110</topic><topic>64/60</topic><topic>82/1</topic><topic>Animals</topic><topic>Automotive wheels</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Brain - physiopathology</topic><topic>Cell Differentiation - drug effects</topic><topic>Cognition</topic><topic>Cognition & reasoning</topic><topic>Cognition - drug effects</topic><topic>Cognitive ability</topic><topic>Cognitive tasks</topic><topic>Dendritic plasticity</topic><topic>Dendritic spines</topic><topic>Dendritic Spines - drug effects</topic><topic>Dendritic Spines - metabolism</topic><topic>Drift</topic><topic>Erythropoietin</topic><topic>Erythropoietin - metabolism</topic><topic>Erythropoietin - pharmacology</topic><topic>Erythropoietin receptors</topic><topic>Female</topic><topic>Functional plasticity</topic><topic>Gene Deletion</topic><topic>Gene expression</topic><topic>Hematopoiesis</topic><topic>Hippocampal plasticity</topic><topic>Hippocampus</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Hypoxia - metabolism</topic><topic>Hypoxia - physiopathology</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>Models, Neurological</topic><topic>Motor Activity - drug effects</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Neurogenesis</topic><topic>Neurogenesis - drug effects</topic><topic>Neuronal Plasticity - drug effects</topic><topic>Neurons</topic><topic>Neuroplasticity</topic><topic>Paracrine signalling</topic><topic>Physical Conditioning, Animal</topic><topic>Physical Endurance - drug effects</topic><topic>Proto-Oncogene Proteins c-fos - metabolism</topic><topic>Pyramidal cells</topic><topic>Pyramidal Cells - drug effects</topic><topic>Pyramidal Cells - metabolism</topic><topic>Receptors, Erythropoietin - metabolism</topic><topic>Respiration</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spine</topic><topic>Transcriptome - drug effects</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wakhloo, Debia</creatorcontrib><creatorcontrib>Scharkowski, Franziska</creatorcontrib><creatorcontrib>Curto, Yasmina</creatorcontrib><creatorcontrib>Javed Butt, Umer</creatorcontrib><creatorcontrib>Bansal, Vikas</creatorcontrib><creatorcontrib>Steixner-Kumar, Agnes A.</creatorcontrib><creatorcontrib>Wüstefeld, Liane</creatorcontrib><creatorcontrib>Rajput, Ashish</creatorcontrib><creatorcontrib>Arinrad, Sahab</creatorcontrib><creatorcontrib>Zillmann, Matthias R.</creatorcontrib><creatorcontrib>Seelbach, Anna</creatorcontrib><creatorcontrib>Hassouna, Imam</creatorcontrib><creatorcontrib>Schneider, Katharina</creatorcontrib><creatorcontrib>Qadir Ibrahim, Abdul</creatorcontrib><creatorcontrib>Werner, Hauke B.</creatorcontrib><creatorcontrib>Martens, Henrik</creatorcontrib><creatorcontrib>Miskowiak, Kamilla</creatorcontrib><creatorcontrib>Wojcik, Sonja M.</creatorcontrib><creatorcontrib>Bonn, Stefan</creatorcontrib><creatorcontrib>Nacher, Juan</creatorcontrib><creatorcontrib>Nave, Klaus-Armin</creatorcontrib><creatorcontrib>Ehrenreich, Hannelore</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wakhloo, Debia</au><au>Scharkowski, Franziska</au><au>Curto, Yasmina</au><au>Javed Butt, Umer</au><au>Bansal, Vikas</au><au>Steixner-Kumar, Agnes A.</au><au>Wüstefeld, Liane</au><au>Rajput, Ashish</au><au>Arinrad, Sahab</au><au>Zillmann, Matthias R.</au><au>Seelbach, Anna</au><au>Hassouna, Imam</au><au>Schneider, Katharina</au><au>Qadir Ibrahim, Abdul</au><au>Werner, Hauke B.</au><au>Martens, Henrik</au><au>Miskowiak, Kamilla</au><au>Wojcik, Sonja M.</au><au>Bonn, Stefan</au><au>Nacher, Juan</au><au>Nave, Klaus-Armin</au><au>Ehrenreich, Hannelore</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2020-03-09</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>1313</spage><epage>12</epage><pages>1313-12</pages><artnum>1313</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Erythropoietin (EPO), named after its role in hematopoiesis, is also expressed in mammalian brain. In clinical settings, recombinant EPO treatment has revealed a remarkable improvement of cognition, but underlying mechanisms have remained obscure. Here, we show with a novel line of reporter mice that cognitive challenge induces local/endogenous hypoxia in hippocampal pyramidal neurons, hence enhancing expression of EPO and EPO receptor (EPOR). High-dose EPO administration, amplifying auto/paracrine EPO/EPOR signaling, prompts the emergence of new CA1 neurons and enhanced dendritic spine densities. Single-cell sequencing reveals rapid increase in newly differentiating neurons. Importantly, improved performance on complex running wheels after EPO is imitated by exposure to mild exogenous/inspiratory hypoxia. All these effects depend on neuronal expression of the
Epor
gene. This suggests a model of neuroplasticity in form of a fundamental regulatory circle, in which neuronal networks—challenged by cognitive tasks—drift into transient hypoxia, thereby triggering neuronal EPO/EPOR expression.
EPO treatment improves cognition, but underlying mechanisms were unknown. Here the authors describe a regulatory loop in which brain networks challenged by cognitive tasks drift into functional hypoxia that drives—via neuronal EPO synthesis—neurodifferentiation and dendritic spine formation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32152318</pmid><doi>10.1038/s41467-020-15041-1</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8371-5711</orcidid><orcidid>https://orcid.org/0000-0002-5589-983X</orcidid><orcidid>https://orcid.org/0000-0002-7710-5738</orcidid><orcidid>https://orcid.org/0000-0002-6741-8861</orcidid><orcidid>https://orcid.org/0000-0001-8724-9666</orcidid><orcidid>https://orcid.org/0000-0002-7083-1358</orcidid><orcidid>https://orcid.org/0000-0002-0944-7226</orcidid><orcidid>https://orcid.org/0000-0001-8087-360X</orcidid><orcidid>https://orcid.org/0000-0001-9112-4444</orcidid><orcidid>https://orcid.org/0000-0002-4222-0947</orcidid><orcidid>https://orcid.org/0000-0001-7913-2716</orcidid><orcidid>https://orcid.org/0000-0002-7908-7369</orcidid><orcidid>https://orcid.org/0000-0003-3288-857X</orcidid><orcidid>https://orcid.org/0000-0003-2572-1384</orcidid><orcidid>https://orcid.org/0000-0003-3452-8500</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2020-03, Vol.11 (1), p.1313-12, Article 1313 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9d32af3f067e4d66a0725b72c12bd117 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | 13/51 14/19 38/91 631/378/2649 631/378/87 64/110 64/60 82/1 Animals Automotive wheels Brain Brain - metabolism Brain - physiopathology Cell Differentiation - drug effects Cognition Cognition & reasoning Cognition - drug effects Cognitive ability Cognitive tasks Dendritic plasticity Dendritic spines Dendritic Spines - drug effects Dendritic Spines - metabolism Drift Erythropoietin Erythropoietin - metabolism Erythropoietin - pharmacology Erythropoietin receptors Female Functional plasticity Gene Deletion Gene expression Hematopoiesis Hippocampal plasticity Hippocampus Humanities and Social Sciences Humans Hypoxia Hypoxia - metabolism Hypoxia - physiopathology Male Mice, Inbred C57BL Models, Neurological Motor Activity - drug effects multidisciplinary Neural networks Neurogenesis Neurogenesis - drug effects Neuronal Plasticity - drug effects Neurons Neuroplasticity Paracrine signalling Physical Conditioning, Animal Physical Endurance - drug effects Proto-Oncogene Proteins c-fos - metabolism Pyramidal cells Pyramidal Cells - drug effects Pyramidal Cells - metabolism Receptors, Erythropoietin - metabolism Respiration Science Science (multidisciplinary) Spine Transcriptome - drug effects Transcriptome - genetics |
title | Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A10%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20hypoxia%20drives%20neuroplasticity%20and%20neurogenesis%20via%20brain%20erythropoietin&rft.jtitle=Nature%20communications&rft.au=Wakhloo,%20Debia&rft.date=2020-03-09&rft.volume=11&rft.issue=1&rft.spage=1313&rft.epage=12&rft.pages=1313-12&rft.artnum=1313&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-15041-1&rft_dat=%3Cproquest_doaj_%3E2375479905%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2375479905&rft_id=info:pmid/32152318&rft_doaj_id=oai_doaj_org_article_9d32af3f067e4d66a0725b72c12bd117&rfr_iscdi=true |