Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin

Erythropoietin (EPO), named after its role in hematopoiesis, is also expressed in mammalian brain. In clinical settings, recombinant EPO treatment has revealed a remarkable improvement of cognition, but underlying mechanisms have remained obscure. Here, we show with a novel line of reporter mice tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-03, Vol.11 (1), p.1313-12, Article 1313
Hauptverfasser: Wakhloo, Debia, Scharkowski, Franziska, Curto, Yasmina, Javed Butt, Umer, Bansal, Vikas, Steixner-Kumar, Agnes A., Wüstefeld, Liane, Rajput, Ashish, Arinrad, Sahab, Zillmann, Matthias R., Seelbach, Anna, Hassouna, Imam, Schneider, Katharina, Qadir Ibrahim, Abdul, Werner, Hauke B., Martens, Henrik, Miskowiak, Kamilla, Wojcik, Sonja M., Bonn, Stefan, Nacher, Juan, Nave, Klaus-Armin, Ehrenreich, Hannelore
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 1
container_start_page 1313
container_title Nature communications
container_volume 11
creator Wakhloo, Debia
Scharkowski, Franziska
Curto, Yasmina
Javed Butt, Umer
Bansal, Vikas
Steixner-Kumar, Agnes A.
Wüstefeld, Liane
Rajput, Ashish
Arinrad, Sahab
Zillmann, Matthias R.
Seelbach, Anna
Hassouna, Imam
Schneider, Katharina
Qadir Ibrahim, Abdul
Werner, Hauke B.
Martens, Henrik
Miskowiak, Kamilla
Wojcik, Sonja M.
Bonn, Stefan
Nacher, Juan
Nave, Klaus-Armin
Ehrenreich, Hannelore
description Erythropoietin (EPO), named after its role in hematopoiesis, is also expressed in mammalian brain. In clinical settings, recombinant EPO treatment has revealed a remarkable improvement of cognition, but underlying mechanisms have remained obscure. Here, we show with a novel line of reporter mice that cognitive challenge induces local/endogenous hypoxia in hippocampal pyramidal neurons, hence enhancing expression of EPO and EPO receptor (EPOR). High-dose EPO administration, amplifying auto/paracrine EPO/EPOR signaling, prompts the emergence of new CA1 neurons and enhanced dendritic spine densities. Single-cell sequencing reveals rapid increase in newly differentiating neurons. Importantly, improved performance on complex running wheels after EPO is imitated by exposure to mild exogenous/inspiratory hypoxia. All these effects depend on neuronal expression of the Epor gene. This suggests a model of neuroplasticity in form of a fundamental regulatory circle, in which neuronal networks—challenged by cognitive tasks—drift into transient hypoxia, thereby triggering neuronal EPO/EPOR expression. EPO treatment improves cognition, but underlying mechanisms were unknown. Here the authors describe a regulatory loop in which brain networks challenged by cognitive tasks drift into functional hypoxia that drives—via neuronal EPO synthesis—neurodifferentiation and dendritic spine formation.
doi_str_mv 10.1038/s41467-020-15041-1
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9d32af3f067e4d66a0725b72c12bd117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9d32af3f067e4d66a0725b72c12bd117</doaj_id><sourcerecordid>2375479905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c655t-63cc3b164bdb750d453ccdaa038e51a71388e1b851954496f7401b37e0dca4703</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EolXpH-CAInEO9fgzuVRCFQuVKnEAzpa_sutVam_tZMX-e9xNPy_44tHMO8-M_SL0EfAXwLS7KAyYkC0muAWOGbTwBp2SYyAJffsiPkHnpWxxPbSHjrH36IQS4IRCd4p-reZop5CiHpvNYZf-Bt24HPa-NNHPOe1GXaZgw3RodHRLbu2jL6E0-6o1WYfY-HyYNlWcgp9C_IDeDXos_vzhPkN_Vt9-X_1ob35-v776etNawfnUCmotNSCYcUZy7BivCad1fZ3noCXQrvNgOg49Z6wXg2QYDJUeO6uZxPQMXS9cl_RW7XK41fmgkg7qmEh5rXSuy49e9Y4SPdABC-mZE0JjSbiRxAIxDkBW1uXC2s3m1jvr45T1-Ar6uhLDRq3TXkksiJR9BXx-AOR0N_syqW2ac_3WogiVnMm-x7yqyKKyOZWS_fA0AbC691Utvqrqqzr6qqA2fXq521PLo4tVQBdBqaW49vl59n-w_wDQg678</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375479905</pqid></control><display><type>article</type><title>Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Wakhloo, Debia ; Scharkowski, Franziska ; Curto, Yasmina ; Javed Butt, Umer ; Bansal, Vikas ; Steixner-Kumar, Agnes A. ; Wüstefeld, Liane ; Rajput, Ashish ; Arinrad, Sahab ; Zillmann, Matthias R. ; Seelbach, Anna ; Hassouna, Imam ; Schneider, Katharina ; Qadir Ibrahim, Abdul ; Werner, Hauke B. ; Martens, Henrik ; Miskowiak, Kamilla ; Wojcik, Sonja M. ; Bonn, Stefan ; Nacher, Juan ; Nave, Klaus-Armin ; Ehrenreich, Hannelore</creator><creatorcontrib>Wakhloo, Debia ; Scharkowski, Franziska ; Curto, Yasmina ; Javed Butt, Umer ; Bansal, Vikas ; Steixner-Kumar, Agnes A. ; Wüstefeld, Liane ; Rajput, Ashish ; Arinrad, Sahab ; Zillmann, Matthias R. ; Seelbach, Anna ; Hassouna, Imam ; Schneider, Katharina ; Qadir Ibrahim, Abdul ; Werner, Hauke B. ; Martens, Henrik ; Miskowiak, Kamilla ; Wojcik, Sonja M. ; Bonn, Stefan ; Nacher, Juan ; Nave, Klaus-Armin ; Ehrenreich, Hannelore</creatorcontrib><description>Erythropoietin (EPO), named after its role in hematopoiesis, is also expressed in mammalian brain. In clinical settings, recombinant EPO treatment has revealed a remarkable improvement of cognition, but underlying mechanisms have remained obscure. Here, we show with a novel line of reporter mice that cognitive challenge induces local/endogenous hypoxia in hippocampal pyramidal neurons, hence enhancing expression of EPO and EPO receptor (EPOR). High-dose EPO administration, amplifying auto/paracrine EPO/EPOR signaling, prompts the emergence of new CA1 neurons and enhanced dendritic spine densities. Single-cell sequencing reveals rapid increase in newly differentiating neurons. Importantly, improved performance on complex running wheels after EPO is imitated by exposure to mild exogenous/inspiratory hypoxia. All these effects depend on neuronal expression of the Epor gene. This suggests a model of neuroplasticity in form of a fundamental regulatory circle, in which neuronal networks—challenged by cognitive tasks—drift into transient hypoxia, thereby triggering neuronal EPO/EPOR expression. EPO treatment improves cognition, but underlying mechanisms were unknown. Here the authors describe a regulatory loop in which brain networks challenged by cognitive tasks drift into functional hypoxia that drives—via neuronal EPO synthesis—neurodifferentiation and dendritic spine formation.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-15041-1</identifier><identifier>PMID: 32152318</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/51 ; 14/19 ; 38/91 ; 631/378/2649 ; 631/378/87 ; 64/110 ; 64/60 ; 82/1 ; Animals ; Automotive wheels ; Brain ; Brain - metabolism ; Brain - physiopathology ; Cell Differentiation - drug effects ; Cognition ; Cognition &amp; reasoning ; Cognition - drug effects ; Cognitive ability ; Cognitive tasks ; Dendritic plasticity ; Dendritic spines ; Dendritic Spines - drug effects ; Dendritic Spines - metabolism ; Drift ; Erythropoietin ; Erythropoietin - metabolism ; Erythropoietin - pharmacology ; Erythropoietin receptors ; Female ; Functional plasticity ; Gene Deletion ; Gene expression ; Hematopoiesis ; Hippocampal plasticity ; Hippocampus ; Humanities and Social Sciences ; Humans ; Hypoxia ; Hypoxia - metabolism ; Hypoxia - physiopathology ; Male ; Mice, Inbred C57BL ; Models, Neurological ; Motor Activity - drug effects ; multidisciplinary ; Neural networks ; Neurogenesis ; Neurogenesis - drug effects ; Neuronal Plasticity - drug effects ; Neurons ; Neuroplasticity ; Paracrine signalling ; Physical Conditioning, Animal ; Physical Endurance - drug effects ; Proto-Oncogene Proteins c-fos - metabolism ; Pyramidal cells ; Pyramidal Cells - drug effects ; Pyramidal Cells - metabolism ; Receptors, Erythropoietin - metabolism ; Respiration ; Science ; Science (multidisciplinary) ; Spine ; Transcriptome - drug effects ; Transcriptome - genetics</subject><ispartof>Nature communications, 2020-03, Vol.11 (1), p.1313-12, Article 1313</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c655t-63cc3b164bdb750d453ccdaa038e51a71388e1b851954496f7401b37e0dca4703</citedby><cites>FETCH-LOGICAL-c655t-63cc3b164bdb750d453ccdaa038e51a71388e1b851954496f7401b37e0dca4703</cites><orcidid>0000-0001-8371-5711 ; 0000-0002-5589-983X ; 0000-0002-7710-5738 ; 0000-0002-6741-8861 ; 0000-0001-8724-9666 ; 0000-0002-7083-1358 ; 0000-0002-0944-7226 ; 0000-0001-8087-360X ; 0000-0001-9112-4444 ; 0000-0002-4222-0947 ; 0000-0001-7913-2716 ; 0000-0002-7908-7369 ; 0000-0003-3288-857X ; 0000-0003-2572-1384 ; 0000-0003-3452-8500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062779/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062779/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32152318$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wakhloo, Debia</creatorcontrib><creatorcontrib>Scharkowski, Franziska</creatorcontrib><creatorcontrib>Curto, Yasmina</creatorcontrib><creatorcontrib>Javed Butt, Umer</creatorcontrib><creatorcontrib>Bansal, Vikas</creatorcontrib><creatorcontrib>Steixner-Kumar, Agnes A.</creatorcontrib><creatorcontrib>Wüstefeld, Liane</creatorcontrib><creatorcontrib>Rajput, Ashish</creatorcontrib><creatorcontrib>Arinrad, Sahab</creatorcontrib><creatorcontrib>Zillmann, Matthias R.</creatorcontrib><creatorcontrib>Seelbach, Anna</creatorcontrib><creatorcontrib>Hassouna, Imam</creatorcontrib><creatorcontrib>Schneider, Katharina</creatorcontrib><creatorcontrib>Qadir Ibrahim, Abdul</creatorcontrib><creatorcontrib>Werner, Hauke B.</creatorcontrib><creatorcontrib>Martens, Henrik</creatorcontrib><creatorcontrib>Miskowiak, Kamilla</creatorcontrib><creatorcontrib>Wojcik, Sonja M.</creatorcontrib><creatorcontrib>Bonn, Stefan</creatorcontrib><creatorcontrib>Nacher, Juan</creatorcontrib><creatorcontrib>Nave, Klaus-Armin</creatorcontrib><creatorcontrib>Ehrenreich, Hannelore</creatorcontrib><title>Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Erythropoietin (EPO), named after its role in hematopoiesis, is also expressed in mammalian brain. In clinical settings, recombinant EPO treatment has revealed a remarkable improvement of cognition, but underlying mechanisms have remained obscure. Here, we show with a novel line of reporter mice that cognitive challenge induces local/endogenous hypoxia in hippocampal pyramidal neurons, hence enhancing expression of EPO and EPO receptor (EPOR). High-dose EPO administration, amplifying auto/paracrine EPO/EPOR signaling, prompts the emergence of new CA1 neurons and enhanced dendritic spine densities. Single-cell sequencing reveals rapid increase in newly differentiating neurons. Importantly, improved performance on complex running wheels after EPO is imitated by exposure to mild exogenous/inspiratory hypoxia. All these effects depend on neuronal expression of the Epor gene. This suggests a model of neuroplasticity in form of a fundamental regulatory circle, in which neuronal networks—challenged by cognitive tasks—drift into transient hypoxia, thereby triggering neuronal EPO/EPOR expression. EPO treatment improves cognition, but underlying mechanisms were unknown. Here the authors describe a regulatory loop in which brain networks challenged by cognitive tasks drift into functional hypoxia that drives—via neuronal EPO synthesis—neurodifferentiation and dendritic spine formation.</description><subject>13/51</subject><subject>14/19</subject><subject>38/91</subject><subject>631/378/2649</subject><subject>631/378/87</subject><subject>64/110</subject><subject>64/60</subject><subject>82/1</subject><subject>Animals</subject><subject>Automotive wheels</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Brain - physiopathology</subject><subject>Cell Differentiation - drug effects</subject><subject>Cognition</subject><subject>Cognition &amp; reasoning</subject><subject>Cognition - drug effects</subject><subject>Cognitive ability</subject><subject>Cognitive tasks</subject><subject>Dendritic plasticity</subject><subject>Dendritic spines</subject><subject>Dendritic Spines - drug effects</subject><subject>Dendritic Spines - metabolism</subject><subject>Drift</subject><subject>Erythropoietin</subject><subject>Erythropoietin - metabolism</subject><subject>Erythropoietin - pharmacology</subject><subject>Erythropoietin receptors</subject><subject>Female</subject><subject>Functional plasticity</subject><subject>Gene Deletion</subject><subject>Gene expression</subject><subject>Hematopoiesis</subject><subject>Hippocampal plasticity</subject><subject>Hippocampus</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Hypoxia - metabolism</subject><subject>Hypoxia - physiopathology</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>Models, Neurological</subject><subject>Motor Activity - drug effects</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Neurogenesis</subject><subject>Neurogenesis - drug effects</subject><subject>Neuronal Plasticity - drug effects</subject><subject>Neurons</subject><subject>Neuroplasticity</subject><subject>Paracrine signalling</subject><subject>Physical Conditioning, Animal</subject><subject>Physical Endurance - drug effects</subject><subject>Proto-Oncogene Proteins c-fos - metabolism</subject><subject>Pyramidal cells</subject><subject>Pyramidal Cells - drug effects</subject><subject>Pyramidal Cells - metabolism</subject><subject>Receptors, Erythropoietin - metabolism</subject><subject>Respiration</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spine</subject><subject>Transcriptome - drug effects</subject><subject>Transcriptome - genetics</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhi0EolXpH-CAInEO9fgzuVRCFQuVKnEAzpa_sutVam_tZMX-e9xNPy_44tHMO8-M_SL0EfAXwLS7KAyYkC0muAWOGbTwBp2SYyAJffsiPkHnpWxxPbSHjrH36IQS4IRCd4p-reZop5CiHpvNYZf-Bt24HPa-NNHPOe1GXaZgw3RodHRLbu2jL6E0-6o1WYfY-HyYNlWcgp9C_IDeDXos_vzhPkN_Vt9-X_1ob35-v776etNawfnUCmotNSCYcUZy7BivCad1fZ3noCXQrvNgOg49Z6wXg2QYDJUeO6uZxPQMXS9cl_RW7XK41fmgkg7qmEh5rXSuy49e9Y4SPdABC-mZE0JjSbiRxAIxDkBW1uXC2s3m1jvr45T1-Ar6uhLDRq3TXkksiJR9BXx-AOR0N_syqW2ac_3WogiVnMm-x7yqyKKyOZWS_fA0AbC691Utvqrqqzr6qqA2fXq521PLo4tVQBdBqaW49vl59n-w_wDQg678</recordid><startdate>20200309</startdate><enddate>20200309</enddate><creator>Wakhloo, Debia</creator><creator>Scharkowski, Franziska</creator><creator>Curto, Yasmina</creator><creator>Javed Butt, Umer</creator><creator>Bansal, Vikas</creator><creator>Steixner-Kumar, Agnes A.</creator><creator>Wüstefeld, Liane</creator><creator>Rajput, Ashish</creator><creator>Arinrad, Sahab</creator><creator>Zillmann, Matthias R.</creator><creator>Seelbach, Anna</creator><creator>Hassouna, Imam</creator><creator>Schneider, Katharina</creator><creator>Qadir Ibrahim, Abdul</creator><creator>Werner, Hauke B.</creator><creator>Martens, Henrik</creator><creator>Miskowiak, Kamilla</creator><creator>Wojcik, Sonja M.</creator><creator>Bonn, Stefan</creator><creator>Nacher, Juan</creator><creator>Nave, Klaus-Armin</creator><creator>Ehrenreich, Hannelore</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8371-5711</orcidid><orcidid>https://orcid.org/0000-0002-5589-983X</orcidid><orcidid>https://orcid.org/0000-0002-7710-5738</orcidid><orcidid>https://orcid.org/0000-0002-6741-8861</orcidid><orcidid>https://orcid.org/0000-0001-8724-9666</orcidid><orcidid>https://orcid.org/0000-0002-7083-1358</orcidid><orcidid>https://orcid.org/0000-0002-0944-7226</orcidid><orcidid>https://orcid.org/0000-0001-8087-360X</orcidid><orcidid>https://orcid.org/0000-0001-9112-4444</orcidid><orcidid>https://orcid.org/0000-0002-4222-0947</orcidid><orcidid>https://orcid.org/0000-0001-7913-2716</orcidid><orcidid>https://orcid.org/0000-0002-7908-7369</orcidid><orcidid>https://orcid.org/0000-0003-3288-857X</orcidid><orcidid>https://orcid.org/0000-0003-2572-1384</orcidid><orcidid>https://orcid.org/0000-0003-3452-8500</orcidid></search><sort><creationdate>20200309</creationdate><title>Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin</title><author>Wakhloo, Debia ; Scharkowski, Franziska ; Curto, Yasmina ; Javed Butt, Umer ; Bansal, Vikas ; Steixner-Kumar, Agnes A. ; Wüstefeld, Liane ; Rajput, Ashish ; Arinrad, Sahab ; Zillmann, Matthias R. ; Seelbach, Anna ; Hassouna, Imam ; Schneider, Katharina ; Qadir Ibrahim, Abdul ; Werner, Hauke B. ; Martens, Henrik ; Miskowiak, Kamilla ; Wojcik, Sonja M. ; Bonn, Stefan ; Nacher, Juan ; Nave, Klaus-Armin ; Ehrenreich, Hannelore</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c655t-63cc3b164bdb750d453ccdaa038e51a71388e1b851954496f7401b37e0dca4703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/51</topic><topic>14/19</topic><topic>38/91</topic><topic>631/378/2649</topic><topic>631/378/87</topic><topic>64/110</topic><topic>64/60</topic><topic>82/1</topic><topic>Animals</topic><topic>Automotive wheels</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Brain - physiopathology</topic><topic>Cell Differentiation - drug effects</topic><topic>Cognition</topic><topic>Cognition &amp; reasoning</topic><topic>Cognition - drug effects</topic><topic>Cognitive ability</topic><topic>Cognitive tasks</topic><topic>Dendritic plasticity</topic><topic>Dendritic spines</topic><topic>Dendritic Spines - drug effects</topic><topic>Dendritic Spines - metabolism</topic><topic>Drift</topic><topic>Erythropoietin</topic><topic>Erythropoietin - metabolism</topic><topic>Erythropoietin - pharmacology</topic><topic>Erythropoietin receptors</topic><topic>Female</topic><topic>Functional plasticity</topic><topic>Gene Deletion</topic><topic>Gene expression</topic><topic>Hematopoiesis</topic><topic>Hippocampal plasticity</topic><topic>Hippocampus</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Hypoxia - metabolism</topic><topic>Hypoxia - physiopathology</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>Models, Neurological</topic><topic>Motor Activity - drug effects</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Neurogenesis</topic><topic>Neurogenesis - drug effects</topic><topic>Neuronal Plasticity - drug effects</topic><topic>Neurons</topic><topic>Neuroplasticity</topic><topic>Paracrine signalling</topic><topic>Physical Conditioning, Animal</topic><topic>Physical Endurance - drug effects</topic><topic>Proto-Oncogene Proteins c-fos - metabolism</topic><topic>Pyramidal cells</topic><topic>Pyramidal Cells - drug effects</topic><topic>Pyramidal Cells - metabolism</topic><topic>Receptors, Erythropoietin - metabolism</topic><topic>Respiration</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spine</topic><topic>Transcriptome - drug effects</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wakhloo, Debia</creatorcontrib><creatorcontrib>Scharkowski, Franziska</creatorcontrib><creatorcontrib>Curto, Yasmina</creatorcontrib><creatorcontrib>Javed Butt, Umer</creatorcontrib><creatorcontrib>Bansal, Vikas</creatorcontrib><creatorcontrib>Steixner-Kumar, Agnes A.</creatorcontrib><creatorcontrib>Wüstefeld, Liane</creatorcontrib><creatorcontrib>Rajput, Ashish</creatorcontrib><creatorcontrib>Arinrad, Sahab</creatorcontrib><creatorcontrib>Zillmann, Matthias R.</creatorcontrib><creatorcontrib>Seelbach, Anna</creatorcontrib><creatorcontrib>Hassouna, Imam</creatorcontrib><creatorcontrib>Schneider, Katharina</creatorcontrib><creatorcontrib>Qadir Ibrahim, Abdul</creatorcontrib><creatorcontrib>Werner, Hauke B.</creatorcontrib><creatorcontrib>Martens, Henrik</creatorcontrib><creatorcontrib>Miskowiak, Kamilla</creatorcontrib><creatorcontrib>Wojcik, Sonja M.</creatorcontrib><creatorcontrib>Bonn, Stefan</creatorcontrib><creatorcontrib>Nacher, Juan</creatorcontrib><creatorcontrib>Nave, Klaus-Armin</creatorcontrib><creatorcontrib>Ehrenreich, Hannelore</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wakhloo, Debia</au><au>Scharkowski, Franziska</au><au>Curto, Yasmina</au><au>Javed Butt, Umer</au><au>Bansal, Vikas</au><au>Steixner-Kumar, Agnes A.</au><au>Wüstefeld, Liane</au><au>Rajput, Ashish</au><au>Arinrad, Sahab</au><au>Zillmann, Matthias R.</au><au>Seelbach, Anna</au><au>Hassouna, Imam</au><au>Schneider, Katharina</au><au>Qadir Ibrahim, Abdul</au><au>Werner, Hauke B.</au><au>Martens, Henrik</au><au>Miskowiak, Kamilla</au><au>Wojcik, Sonja M.</au><au>Bonn, Stefan</au><au>Nacher, Juan</au><au>Nave, Klaus-Armin</au><au>Ehrenreich, Hannelore</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2020-03-09</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>1313</spage><epage>12</epage><pages>1313-12</pages><artnum>1313</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Erythropoietin (EPO), named after its role in hematopoiesis, is also expressed in mammalian brain. In clinical settings, recombinant EPO treatment has revealed a remarkable improvement of cognition, but underlying mechanisms have remained obscure. Here, we show with a novel line of reporter mice that cognitive challenge induces local/endogenous hypoxia in hippocampal pyramidal neurons, hence enhancing expression of EPO and EPO receptor (EPOR). High-dose EPO administration, amplifying auto/paracrine EPO/EPOR signaling, prompts the emergence of new CA1 neurons and enhanced dendritic spine densities. Single-cell sequencing reveals rapid increase in newly differentiating neurons. Importantly, improved performance on complex running wheels after EPO is imitated by exposure to mild exogenous/inspiratory hypoxia. All these effects depend on neuronal expression of the Epor gene. This suggests a model of neuroplasticity in form of a fundamental regulatory circle, in which neuronal networks—challenged by cognitive tasks—drift into transient hypoxia, thereby triggering neuronal EPO/EPOR expression. EPO treatment improves cognition, but underlying mechanisms were unknown. Here the authors describe a regulatory loop in which brain networks challenged by cognitive tasks drift into functional hypoxia that drives—via neuronal EPO synthesis—neurodifferentiation and dendritic spine formation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32152318</pmid><doi>10.1038/s41467-020-15041-1</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8371-5711</orcidid><orcidid>https://orcid.org/0000-0002-5589-983X</orcidid><orcidid>https://orcid.org/0000-0002-7710-5738</orcidid><orcidid>https://orcid.org/0000-0002-6741-8861</orcidid><orcidid>https://orcid.org/0000-0001-8724-9666</orcidid><orcidid>https://orcid.org/0000-0002-7083-1358</orcidid><orcidid>https://orcid.org/0000-0002-0944-7226</orcidid><orcidid>https://orcid.org/0000-0001-8087-360X</orcidid><orcidid>https://orcid.org/0000-0001-9112-4444</orcidid><orcidid>https://orcid.org/0000-0002-4222-0947</orcidid><orcidid>https://orcid.org/0000-0001-7913-2716</orcidid><orcidid>https://orcid.org/0000-0002-7908-7369</orcidid><orcidid>https://orcid.org/0000-0003-3288-857X</orcidid><orcidid>https://orcid.org/0000-0003-2572-1384</orcidid><orcidid>https://orcid.org/0000-0003-3452-8500</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2020-03, Vol.11 (1), p.1313-12, Article 1313
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9d32af3f067e4d66a0725b72c12bd117
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects 13/51
14/19
38/91
631/378/2649
631/378/87
64/110
64/60
82/1
Animals
Automotive wheels
Brain
Brain - metabolism
Brain - physiopathology
Cell Differentiation - drug effects
Cognition
Cognition & reasoning
Cognition - drug effects
Cognitive ability
Cognitive tasks
Dendritic plasticity
Dendritic spines
Dendritic Spines - drug effects
Dendritic Spines - metabolism
Drift
Erythropoietin
Erythropoietin - metabolism
Erythropoietin - pharmacology
Erythropoietin receptors
Female
Functional plasticity
Gene Deletion
Gene expression
Hematopoiesis
Hippocampal plasticity
Hippocampus
Humanities and Social Sciences
Humans
Hypoxia
Hypoxia - metabolism
Hypoxia - physiopathology
Male
Mice, Inbred C57BL
Models, Neurological
Motor Activity - drug effects
multidisciplinary
Neural networks
Neurogenesis
Neurogenesis - drug effects
Neuronal Plasticity - drug effects
Neurons
Neuroplasticity
Paracrine signalling
Physical Conditioning, Animal
Physical Endurance - drug effects
Proto-Oncogene Proteins c-fos - metabolism
Pyramidal cells
Pyramidal Cells - drug effects
Pyramidal Cells - metabolism
Receptors, Erythropoietin - metabolism
Respiration
Science
Science (multidisciplinary)
Spine
Transcriptome - drug effects
Transcriptome - genetics
title Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A10%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20hypoxia%20drives%20neuroplasticity%20and%20neurogenesis%20via%20brain%20erythropoietin&rft.jtitle=Nature%20communications&rft.au=Wakhloo,%20Debia&rft.date=2020-03-09&rft.volume=11&rft.issue=1&rft.spage=1313&rft.epage=12&rft.pages=1313-12&rft.artnum=1313&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-15041-1&rft_dat=%3Cproquest_doaj_%3E2375479905%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2375479905&rft_id=info:pmid/32152318&rft_doaj_id=oai_doaj_org_article_9d32af3f067e4d66a0725b72c12bd117&rfr_iscdi=true