Multiagent Deep Reinforcement Learning for Joint Multichannel Access and Task Offloading of Mobile-Edge Computing in Industry 4.0

Industry 4.0 aims to create a modern industrial system by introducing technologies, such as cloud computing, intelligent robotics, and wireless sensor networks. In this article, we consider the multichannel access and task offloading problem in mobile-edge computing (MEC)-enabled industry 4.0 and de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2020-07, Vol.7 (7), p.6201-6213
Hauptverfasser: Cao, Zilong, Zhou, Pan, Li, Ruixuan, Huang, Siqi, Wu, Dapeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6213
container_issue 7
container_start_page 6201
container_title IEEE internet of things journal
container_volume 7
creator Cao, Zilong
Zhou, Pan
Li, Ruixuan
Huang, Siqi
Wu, Dapeng
description Industry 4.0 aims to create a modern industrial system by introducing technologies, such as cloud computing, intelligent robotics, and wireless sensor networks. In this article, we consider the multichannel access and task offloading problem in mobile-edge computing (MEC)-enabled industry 4.0 and describe this problem in multiagent environment. To solve this problem, we propose a novel multiagent deep reinforcement learning (MADRL) scheme. The solution enables edge devices (EDs) to cooperate with each other, which can significantly reduce the computation delay and improve the channel access success rate. Extensive simulation results with different system parameters reveal that the proposed scheme could reduce computation delay by 33.38% and increase the channel access success rate by 14.88% and channel utilization by 3.24% compared to the traditional single-agent reinforcement learning method.
doi_str_mv 10.1109/JIOT.2020.2968951
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_webofscience_primary_000548817900047CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9037194</ieee_id><sourcerecordid>2424189423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-c51793d107e74ac41dce77c296afbaa2982b3431ae926c04fb2cc0290b82483f3</originalsourceid><addsrcrecordid>eNqNkMtqGzEYhYfSQIybBwjZCLos4-o2Fy3NNE0dbAzBWQ8azS9X6VhyJQ0hy755NHVIssxKP0fn0-XLskuCF4Rg8f12td0tKKZ4QUVZi4J8ymaU0SrnZUk_v5vPs4sQHjDGCSuIKGfZv804RCP3YCP6AXBEd2Csdl7BYYrWIL01do9ShG6dSdF_QP2W1sKAlkpBCEjaHu1k-IO2Wg9O9hPhNNq4zgyQX_d7QI07HMc4bRiLVrYfQ_RPiC_wl-xMyyHAxcs6z-5_Xu-aX_l6e7NqlutcsULEXBWkEqwnuIKKS8VJr6CqVPqw1J2UVNS0Y5wRCYKWCnPdUaUwFbirKa-ZZvPs6-nco3d_RwixfXCjt-nKlnLKSS04ZalFTi3lXQgedHv05iD9U0twO8luJ9ntJLt9kZ2YbyfmETqngzJgFbxyyXbB6zq9Pk28Su364-3GRBmNs40bbUzo1Qk1AG-IwKwigrNnMsSbww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424189423</pqid></control><display><type>article</type><title>Multiagent Deep Reinforcement Learning for Joint Multichannel Access and Task Offloading of Mobile-Edge Computing in Industry 4.0</title><source>IEEE Electronic Library (IEL)</source><creator>Cao, Zilong ; Zhou, Pan ; Li, Ruixuan ; Huang, Siqi ; Wu, Dapeng</creator><creatorcontrib>Cao, Zilong ; Zhou, Pan ; Li, Ruixuan ; Huang, Siqi ; Wu, Dapeng</creatorcontrib><description>Industry 4.0 aims to create a modern industrial system by introducing technologies, such as cloud computing, intelligent robotics, and wireless sensor networks. In this article, we consider the multichannel access and task offloading problem in mobile-edge computing (MEC)-enabled industry 4.0 and describe this problem in multiagent environment. To solve this problem, we propose a novel multiagent deep reinforcement learning (MADRL) scheme. The solution enables edge devices (EDs) to cooperate with each other, which can significantly reduce the computation delay and improve the channel access success rate. Extensive simulation results with different system parameters reveal that the proposed scheme could reduce computation delay by 33.38% and increase the channel access success rate by 14.88% and channel utilization by 3.24% compared to the traditional single-agent reinforcement learning method.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2020.2968951</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Cloud computing ; Computation offloading ; Computer Science ; Computer Science, Information Systems ; Computer simulation ; Deep learning ; Edge computing ; Engineering ; Engineering, Electrical &amp; Electronic ; Heuristic algorithms ; Industries ; Industry 4.0 ; Machine-to-machine (M2M) communications ; Mobile computing ; mobile-edge computing (MEC) ; multiagent deep reinforcement learning (MADRL) ; Multiagent systems ; Reinforcement learning ; Robotics ; Science &amp; Technology ; Servers ; Task analysis ; task offloading ; Technology ; Telecommunications ; Wireless sensor networks</subject><ispartof>IEEE internet of things journal, 2020-07, Vol.7 (7), p.6201-6213</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>110</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000548817900047</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c359t-c51793d107e74ac41dce77c296afbaa2982b3431ae926c04fb2cc0290b82483f3</citedby><cites>FETCH-LOGICAL-c359t-c51793d107e74ac41dce77c296afbaa2982b3431ae926c04fb2cc0290b82483f3</cites><orcidid>0000-0002-5952-4998 ; 0000-0002-8629-4622 ; 0000-0002-7791-5511 ; 0000-0003-1755-0183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9037194$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,28253,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9037194$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cao, Zilong</creatorcontrib><creatorcontrib>Zhou, Pan</creatorcontrib><creatorcontrib>Li, Ruixuan</creatorcontrib><creatorcontrib>Huang, Siqi</creatorcontrib><creatorcontrib>Wu, Dapeng</creatorcontrib><title>Multiagent Deep Reinforcement Learning for Joint Multichannel Access and Task Offloading of Mobile-Edge Computing in Industry 4.0</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><addtitle>IEEE INTERNET THINGS</addtitle><description>Industry 4.0 aims to create a modern industrial system by introducing technologies, such as cloud computing, intelligent robotics, and wireless sensor networks. In this article, we consider the multichannel access and task offloading problem in mobile-edge computing (MEC)-enabled industry 4.0 and describe this problem in multiagent environment. To solve this problem, we propose a novel multiagent deep reinforcement learning (MADRL) scheme. The solution enables edge devices (EDs) to cooperate with each other, which can significantly reduce the computation delay and improve the channel access success rate. Extensive simulation results with different system parameters reveal that the proposed scheme could reduce computation delay by 33.38% and increase the channel access success rate by 14.88% and channel utilization by 3.24% compared to the traditional single-agent reinforcement learning method.</description><subject>Cloud computing</subject><subject>Computation offloading</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Computer simulation</subject><subject>Deep learning</subject><subject>Edge computing</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Heuristic algorithms</subject><subject>Industries</subject><subject>Industry 4.0</subject><subject>Machine-to-machine (M2M) communications</subject><subject>Mobile computing</subject><subject>mobile-edge computing (MEC)</subject><subject>multiagent deep reinforcement learning (MADRL)</subject><subject>Multiagent systems</subject><subject>Reinforcement learning</subject><subject>Robotics</subject><subject>Science &amp; Technology</subject><subject>Servers</subject><subject>Task analysis</subject><subject>task offloading</subject><subject>Technology</subject><subject>Telecommunications</subject><subject>Wireless sensor networks</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkMtqGzEYhYfSQIybBwjZCLos4-o2Fy3NNE0dbAzBWQ8azS9X6VhyJQ0hy755NHVIssxKP0fn0-XLskuCF4Rg8f12td0tKKZ4QUVZi4J8ymaU0SrnZUk_v5vPs4sQHjDGCSuIKGfZv804RCP3YCP6AXBEd2Csdl7BYYrWIL01do9ShG6dSdF_QP2W1sKAlkpBCEjaHu1k-IO2Wg9O9hPhNNq4zgyQX_d7QI07HMc4bRiLVrYfQ_RPiC_wl-xMyyHAxcs6z-5_Xu-aX_l6e7NqlutcsULEXBWkEqwnuIKKS8VJr6CqVPqw1J2UVNS0Y5wRCYKWCnPdUaUwFbirKa-ZZvPs6-nco3d_RwixfXCjt-nKlnLKSS04ZalFTi3lXQgedHv05iD9U0twO8luJ9ntJLt9kZ2YbyfmETqngzJgFbxyyXbB6zq9Pk28Su364-3GRBmNs40bbUzo1Qk1AG-IwKwigrNnMsSbww</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Cao, Zilong</creator><creator>Zhou, Pan</creator><creator>Li, Ruixuan</creator><creator>Huang, Siqi</creator><creator>Wu, Dapeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5952-4998</orcidid><orcidid>https://orcid.org/0000-0002-8629-4622</orcidid><orcidid>https://orcid.org/0000-0002-7791-5511</orcidid><orcidid>https://orcid.org/0000-0003-1755-0183</orcidid></search><sort><creationdate>20200701</creationdate><title>Multiagent Deep Reinforcement Learning for Joint Multichannel Access and Task Offloading of Mobile-Edge Computing in Industry 4.0</title><author>Cao, Zilong ; Zhou, Pan ; Li, Ruixuan ; Huang, Siqi ; Wu, Dapeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-c51793d107e74ac41dce77c296afbaa2982b3431ae926c04fb2cc0290b82483f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cloud computing</topic><topic>Computation offloading</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Computer simulation</topic><topic>Deep learning</topic><topic>Edge computing</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Heuristic algorithms</topic><topic>Industries</topic><topic>Industry 4.0</topic><topic>Machine-to-machine (M2M) communications</topic><topic>Mobile computing</topic><topic>mobile-edge computing (MEC)</topic><topic>multiagent deep reinforcement learning (MADRL)</topic><topic>Multiagent systems</topic><topic>Reinforcement learning</topic><topic>Robotics</topic><topic>Science &amp; Technology</topic><topic>Servers</topic><topic>Task analysis</topic><topic>task offloading</topic><topic>Technology</topic><topic>Telecommunications</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Cao, Zilong</creatorcontrib><creatorcontrib>Zhou, Pan</creatorcontrib><creatorcontrib>Li, Ruixuan</creatorcontrib><creatorcontrib>Huang, Siqi</creatorcontrib><creatorcontrib>Wu, Dapeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cao, Zilong</au><au>Zhou, Pan</au><au>Li, Ruixuan</au><au>Huang, Siqi</au><au>Wu, Dapeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiagent Deep Reinforcement Learning for Joint Multichannel Access and Task Offloading of Mobile-Edge Computing in Industry 4.0</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><stitle>IEEE INTERNET THINGS</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>7</volume><issue>7</issue><spage>6201</spage><epage>6213</epage><pages>6201-6213</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Industry 4.0 aims to create a modern industrial system by introducing technologies, such as cloud computing, intelligent robotics, and wireless sensor networks. In this article, we consider the multichannel access and task offloading problem in mobile-edge computing (MEC)-enabled industry 4.0 and describe this problem in multiagent environment. To solve this problem, we propose a novel multiagent deep reinforcement learning (MADRL) scheme. The solution enables edge devices (EDs) to cooperate with each other, which can significantly reduce the computation delay and improve the channel access success rate. Extensive simulation results with different system parameters reveal that the proposed scheme could reduce computation delay by 33.38% and increase the channel access success rate by 14.88% and channel utilization by 3.24% compared to the traditional single-agent reinforcement learning method.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/JIOT.2020.2968951</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5952-4998</orcidid><orcidid>https://orcid.org/0000-0002-8629-4622</orcidid><orcidid>https://orcid.org/0000-0002-7791-5511</orcidid><orcidid>https://orcid.org/0000-0003-1755-0183</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2020-07, Vol.7 (7), p.6201-6213
issn 2327-4662
2327-4662
language eng
recordid cdi_webofscience_primary_000548817900047CitationCount
source IEEE Electronic Library (IEL)
subjects Cloud computing
Computation offloading
Computer Science
Computer Science, Information Systems
Computer simulation
Deep learning
Edge computing
Engineering
Engineering, Electrical & Electronic
Heuristic algorithms
Industries
Industry 4.0
Machine-to-machine (M2M) communications
Mobile computing
mobile-edge computing (MEC)
multiagent deep reinforcement learning (MADRL)
Multiagent systems
Reinforcement learning
Robotics
Science & Technology
Servers
Task analysis
task offloading
Technology
Telecommunications
Wireless sensor networks
title Multiagent Deep Reinforcement Learning for Joint Multichannel Access and Task Offloading of Mobile-Edge Computing in Industry 4.0
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T05%3A53%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiagent%20Deep%20Reinforcement%20Learning%20for%20Joint%20Multichannel%20Access%20and%20Task%20Offloading%20of%20Mobile-Edge%20Computing%20in%20Industry%204.0&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Cao,%20Zilong&rft.date=2020-07-01&rft.volume=7&rft.issue=7&rft.spage=6201&rft.epage=6213&rft.pages=6201-6213&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2020.2968951&rft_dat=%3Cproquest_RIE%3E2424189423%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424189423&rft_id=info:pmid/&rft_ieee_id=9037194&rfr_iscdi=true