Application of GETFLOWS Coupled with Chemical Reactions to Arsenic Removal through Ferrihydrite Coprecipitation in an Artificial Wetland of a Japanese Closed Mine

Passive systems that utilize a natural power such as a pond, plant, or microorganisms, is expected to be a cost-effective method for acid mine drainage (AMD) treatment. The Ningyo-toge mine, a non-operational uranium mine located in Okayama Prefecture, Japan, generates AMD containing arsenic and iro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Minerals (Basel) 2020-05, Vol.10 (5), p.475, Article 475
Hauptverfasser: Kato, Tatsuya, Kawasaki, Yohei, Kadokura, Masakazu, Suzuki, Kohei, Tawara, Yasuhiro, Ohara, Yoshiyuki, Tokoro, Chiharu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 475
container_title Minerals (Basel)
container_volume 10
creator Kato, Tatsuya
Kawasaki, Yohei
Kadokura, Masakazu
Suzuki, Kohei
Tawara, Yasuhiro
Ohara, Yoshiyuki
Tokoro, Chiharu
description Passive systems that utilize a natural power such as a pond, plant, or microorganisms, is expected to be a cost-effective method for acid mine drainage (AMD) treatment. The Ningyo-toge mine, a non-operational uranium mine located in Okayama Prefecture, Japan, generates AMD containing arsenic and iron. To quantitatively study arsenic and iron ion removal in an artificial wetland and pond, chemical reactions were modeled and incorporated into the GETFLOWS (general-purpose terrestrial fluid-flow simulator) software. The chemical reaction models consisted of arsenite and ferrous oxidation equations and arsenic adsorption on ferrihydrite. The X-ray diffraction analysis of sediment samples showed ferrihydrite patterns. These results were consistent with the model for arsenite/ferrous oxidation and arsenic adsorption on ferrihydrite. Geofluid simulation was conducted to simulate mass transfer with the utilized topographic model, inlet flow rate, precipitation, and evaporation. The measured arsenic and iron ions concentrations in solution samples from the wetland and pond, fitted well with the model. This indicated that the main removal mechanism was the oxidation of arsenite/ferrous ions and that arsenic was removed by adsorption rather than dilution.
doi_str_mv 10.3390/min10050475
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000548343700090CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d411d72b632f41b09a300614f1af1dcb</doaj_id><sourcerecordid>2407426744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-cf5bc7995017af5168b282f76ee941b293d3d12bddf6e186a7419632c115140d3</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhSMEElXbFS9giSUa8F_iZDmKOqVoUCUoKjvLsa8bjzJ2sD1UfR2eFE9TlS7xxtb1d86xfKrqHcEfGevwp73zBOMac1G_qk4oFvWKNOzn6xfnt9V5SjtcVkdYW9OT6s96nienVXbBo2DR5cXNZnt9-x314TBPYNC9yyPqR9gXaELfQOkjmlAOaB0TeKfLcB9-l8s8xnC4G9EGYnTjg4kuQ_GZI2g3u7xkOI-UL9LsrNOuqG4hT8qbY7hCX9SsPKQim0Iq6V-dh7PqjVVTgvOn_bT6sbm46T-vtteXV_16u9Ks4XmlbT1o0XU1JkLZmjTtQFtqRQPQcTLQjhlmCB2MsQ2QtlGCk65hVBNSE44NO62uFl8T1E7O0e1VfJBBOfk4CPFOqvJsPYE0nBAj6FDktnjjTjGMG8ItUZYYPRSv94vXHMOvA6Qsd-EQfXm-pBwLThvBeaE-LJSOIaUI9jmVYHnsVL7otNDtQt_DEGzSDryGZ0XptOYt40wc28X903-XGn3-F_Q_UvYXbQy1ZQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407426744</pqid></control><display><type>article</type><title>Application of GETFLOWS Coupled with Chemical Reactions to Arsenic Removal through Ferrihydrite Coprecipitation in an Artificial Wetland of a Japanese Closed Mine</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Kato, Tatsuya ; Kawasaki, Yohei ; Kadokura, Masakazu ; Suzuki, Kohei ; Tawara, Yasuhiro ; Ohara, Yoshiyuki ; Tokoro, Chiharu</creator><creatorcontrib>Kato, Tatsuya ; Kawasaki, Yohei ; Kadokura, Masakazu ; Suzuki, Kohei ; Tawara, Yasuhiro ; Ohara, Yoshiyuki ; Tokoro, Chiharu</creatorcontrib><description>Passive systems that utilize a natural power such as a pond, plant, or microorganisms, is expected to be a cost-effective method for acid mine drainage (AMD) treatment. The Ningyo-toge mine, a non-operational uranium mine located in Okayama Prefecture, Japan, generates AMD containing arsenic and iron. To quantitatively study arsenic and iron ion removal in an artificial wetland and pond, chemical reactions were modeled and incorporated into the GETFLOWS (general-purpose terrestrial fluid-flow simulator) software. The chemical reaction models consisted of arsenite and ferrous oxidation equations and arsenic adsorption on ferrihydrite. The X-ray diffraction analysis of sediment samples showed ferrihydrite patterns. These results were consistent with the model for arsenite/ferrous oxidation and arsenic adsorption on ferrihydrite. Geofluid simulation was conducted to simulate mass transfer with the utilized topographic model, inlet flow rate, precipitation, and evaporation. The measured arsenic and iron ions concentrations in solution samples from the wetland and pond, fitted well with the model. This indicated that the main removal mechanism was the oxidation of arsenite/ferrous ions and that arsenic was removed by adsorption rather than dilution.</description><identifier>ISSN: 2075-163X</identifier><identifier>EISSN: 2075-163X</identifier><identifier>DOI: 10.3390/min10050475</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Acid mine drainage ; Adsorption ; Aluminum ; Arsenic ; Arsenic removal ; Arsenite ; Artificial wetlands ; Chemical precipitation ; Chemical reactions ; Computational fluid dynamics ; Computer simulation ; Coprecipitation ; Diffraction patterns ; Dilution ; Evaporation ; Evaporation rate ; Ferrous ions ; Flow rates ; Flow velocity ; Fluid flow ; Geochemistry &amp; Geophysics ; GETFLOWS ; Inlet flow ; Inlets (waterways) ; Ions ; Iron ; Mass transfer ; Microorganisms ; Mine drainage ; Mineralogy ; Mines ; Mining &amp; Mineral Processing ; Oxidation ; Physical Sciences ; Pollutant removal ; Ponds ; Precipitation ; quantitative modeling ; Removal ; Science &amp; Technology ; Sediment samplers ; Sediment samples ; Simulation ; Simulators ; Studies ; surface complexation ; Surface water ; the three-dimensional topographic model ; Uranium ; Water pollution ; Wetlands ; X-ray diffraction ; X-ray diffraction analysis</subject><ispartof>Minerals (Basel), 2020-05, Vol.10 (5), p.475, Article 475</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>6</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000548343700090</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c364t-cf5bc7995017af5168b282f76ee941b293d3d12bddf6e186a7419632c115140d3</citedby><cites>FETCH-LOGICAL-c364t-cf5bc7995017af5168b282f76ee941b293d3d12bddf6e186a7419632c115140d3</cites><orcidid>0000-0001-6214-0402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929,28252</link.rule.ids></links><search><creatorcontrib>Kato, Tatsuya</creatorcontrib><creatorcontrib>Kawasaki, Yohei</creatorcontrib><creatorcontrib>Kadokura, Masakazu</creatorcontrib><creatorcontrib>Suzuki, Kohei</creatorcontrib><creatorcontrib>Tawara, Yasuhiro</creatorcontrib><creatorcontrib>Ohara, Yoshiyuki</creatorcontrib><creatorcontrib>Tokoro, Chiharu</creatorcontrib><title>Application of GETFLOWS Coupled with Chemical Reactions to Arsenic Removal through Ferrihydrite Coprecipitation in an Artificial Wetland of a Japanese Closed Mine</title><title>Minerals (Basel)</title><addtitle>MINERALS-BASEL</addtitle><description>Passive systems that utilize a natural power such as a pond, plant, or microorganisms, is expected to be a cost-effective method for acid mine drainage (AMD) treatment. The Ningyo-toge mine, a non-operational uranium mine located in Okayama Prefecture, Japan, generates AMD containing arsenic and iron. To quantitatively study arsenic and iron ion removal in an artificial wetland and pond, chemical reactions were modeled and incorporated into the GETFLOWS (general-purpose terrestrial fluid-flow simulator) software. The chemical reaction models consisted of arsenite and ferrous oxidation equations and arsenic adsorption on ferrihydrite. The X-ray diffraction analysis of sediment samples showed ferrihydrite patterns. These results were consistent with the model for arsenite/ferrous oxidation and arsenic adsorption on ferrihydrite. Geofluid simulation was conducted to simulate mass transfer with the utilized topographic model, inlet flow rate, precipitation, and evaporation. The measured arsenic and iron ions concentrations in solution samples from the wetland and pond, fitted well with the model. This indicated that the main removal mechanism was the oxidation of arsenite/ferrous ions and that arsenic was removed by adsorption rather than dilution.</description><subject>Acid mine drainage</subject><subject>Adsorption</subject><subject>Aluminum</subject><subject>Arsenic</subject><subject>Arsenic removal</subject><subject>Arsenite</subject><subject>Artificial wetlands</subject><subject>Chemical precipitation</subject><subject>Chemical reactions</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Coprecipitation</subject><subject>Diffraction patterns</subject><subject>Dilution</subject><subject>Evaporation</subject><subject>Evaporation rate</subject><subject>Ferrous ions</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Geochemistry &amp; Geophysics</subject><subject>GETFLOWS</subject><subject>Inlet flow</subject><subject>Inlets (waterways)</subject><subject>Ions</subject><subject>Iron</subject><subject>Mass transfer</subject><subject>Microorganisms</subject><subject>Mine drainage</subject><subject>Mineralogy</subject><subject>Mines</subject><subject>Mining &amp; Mineral Processing</subject><subject>Oxidation</subject><subject>Physical Sciences</subject><subject>Pollutant removal</subject><subject>Ponds</subject><subject>Precipitation</subject><subject>quantitative modeling</subject><subject>Removal</subject><subject>Science &amp; Technology</subject><subject>Sediment samplers</subject><subject>Sediment samples</subject><subject>Simulation</subject><subject>Simulators</subject><subject>Studies</subject><subject>surface complexation</subject><subject>Surface water</subject><subject>the three-dimensional topographic model</subject><subject>Uranium</subject><subject>Water pollution</subject><subject>Wetlands</subject><subject>X-ray diffraction</subject><subject>X-ray diffraction analysis</subject><issn>2075-163X</issn><issn>2075-163X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkc1u1DAUhSMEElXbFS9giSUa8F_iZDmKOqVoUCUoKjvLsa8bjzJ2sD1UfR2eFE9TlS7xxtb1d86xfKrqHcEfGevwp73zBOMac1G_qk4oFvWKNOzn6xfnt9V5SjtcVkdYW9OT6s96nienVXbBo2DR5cXNZnt9-x314TBPYNC9yyPqR9gXaELfQOkjmlAOaB0TeKfLcB9-l8s8xnC4G9EGYnTjg4kuQ_GZI2g3u7xkOI-UL9LsrNOuqG4hT8qbY7hCX9SsPKQim0Iq6V-dh7PqjVVTgvOn_bT6sbm46T-vtteXV_16u9Ks4XmlbT1o0XU1JkLZmjTtQFtqRQPQcTLQjhlmCB2MsQ2QtlGCk65hVBNSE44NO62uFl8T1E7O0e1VfJBBOfk4CPFOqvJsPYE0nBAj6FDktnjjTjGMG8ItUZYYPRSv94vXHMOvA6Qsd-EQfXm-pBwLThvBeaE-LJSOIaUI9jmVYHnsVL7otNDtQt_DEGzSDryGZ0XptOYt40wc28X903-XGn3-F_Q_UvYXbQy1ZQ</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Kato, Tatsuya</creator><creator>Kawasaki, Yohei</creator><creator>Kadokura, Masakazu</creator><creator>Suzuki, Kohei</creator><creator>Tawara, Yasuhiro</creator><creator>Ohara, Yoshiyuki</creator><creator>Tokoro, Chiharu</creator><general>Mdpi</general><general>MDPI AG</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6214-0402</orcidid></search><sort><creationdate>20200501</creationdate><title>Application of GETFLOWS Coupled with Chemical Reactions to Arsenic Removal through Ferrihydrite Coprecipitation in an Artificial Wetland of a Japanese Closed Mine</title><author>Kato, Tatsuya ; Kawasaki, Yohei ; Kadokura, Masakazu ; Suzuki, Kohei ; Tawara, Yasuhiro ; Ohara, Yoshiyuki ; Tokoro, Chiharu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-cf5bc7995017af5168b282f76ee941b293d3d12bddf6e186a7419632c115140d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acid mine drainage</topic><topic>Adsorption</topic><topic>Aluminum</topic><topic>Arsenic</topic><topic>Arsenic removal</topic><topic>Arsenite</topic><topic>Artificial wetlands</topic><topic>Chemical precipitation</topic><topic>Chemical reactions</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Coprecipitation</topic><topic>Diffraction patterns</topic><topic>Dilution</topic><topic>Evaporation</topic><topic>Evaporation rate</topic><topic>Ferrous ions</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Geochemistry &amp; Geophysics</topic><topic>GETFLOWS</topic><topic>Inlet flow</topic><topic>Inlets (waterways)</topic><topic>Ions</topic><topic>Iron</topic><topic>Mass transfer</topic><topic>Microorganisms</topic><topic>Mine drainage</topic><topic>Mineralogy</topic><topic>Mines</topic><topic>Mining &amp; Mineral Processing</topic><topic>Oxidation</topic><topic>Physical Sciences</topic><topic>Pollutant removal</topic><topic>Ponds</topic><topic>Precipitation</topic><topic>quantitative modeling</topic><topic>Removal</topic><topic>Science &amp; Technology</topic><topic>Sediment samplers</topic><topic>Sediment samples</topic><topic>Simulation</topic><topic>Simulators</topic><topic>Studies</topic><topic>surface complexation</topic><topic>Surface water</topic><topic>the three-dimensional topographic model</topic><topic>Uranium</topic><topic>Water pollution</topic><topic>Wetlands</topic><topic>X-ray diffraction</topic><topic>X-ray diffraction analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kato, Tatsuya</creatorcontrib><creatorcontrib>Kawasaki, Yohei</creatorcontrib><creatorcontrib>Kadokura, Masakazu</creatorcontrib><creatorcontrib>Suzuki, Kohei</creatorcontrib><creatorcontrib>Tawara, Yasuhiro</creatorcontrib><creatorcontrib>Ohara, Yoshiyuki</creatorcontrib><creatorcontrib>Tokoro, Chiharu</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Minerals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kato, Tatsuya</au><au>Kawasaki, Yohei</au><au>Kadokura, Masakazu</au><au>Suzuki, Kohei</au><au>Tawara, Yasuhiro</au><au>Ohara, Yoshiyuki</au><au>Tokoro, Chiharu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of GETFLOWS Coupled with Chemical Reactions to Arsenic Removal through Ferrihydrite Coprecipitation in an Artificial Wetland of a Japanese Closed Mine</atitle><jtitle>Minerals (Basel)</jtitle><stitle>MINERALS-BASEL</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>10</volume><issue>5</issue><spage>475</spage><pages>475-</pages><artnum>475</artnum><issn>2075-163X</issn><eissn>2075-163X</eissn><abstract>Passive systems that utilize a natural power such as a pond, plant, or microorganisms, is expected to be a cost-effective method for acid mine drainage (AMD) treatment. The Ningyo-toge mine, a non-operational uranium mine located in Okayama Prefecture, Japan, generates AMD containing arsenic and iron. To quantitatively study arsenic and iron ion removal in an artificial wetland and pond, chemical reactions were modeled and incorporated into the GETFLOWS (general-purpose terrestrial fluid-flow simulator) software. The chemical reaction models consisted of arsenite and ferrous oxidation equations and arsenic adsorption on ferrihydrite. The X-ray diffraction analysis of sediment samples showed ferrihydrite patterns. These results were consistent with the model for arsenite/ferrous oxidation and arsenic adsorption on ferrihydrite. Geofluid simulation was conducted to simulate mass transfer with the utilized topographic model, inlet flow rate, precipitation, and evaporation. The measured arsenic and iron ions concentrations in solution samples from the wetland and pond, fitted well with the model. This indicated that the main removal mechanism was the oxidation of arsenite/ferrous ions and that arsenic was removed by adsorption rather than dilution.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/min10050475</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6214-0402</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-163X
ispartof Minerals (Basel), 2020-05, Vol.10 (5), p.475, Article 475
issn 2075-163X
2075-163X
language eng
recordid cdi_webofscience_primary_000548343700090CitationCount
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects Acid mine drainage
Adsorption
Aluminum
Arsenic
Arsenic removal
Arsenite
Artificial wetlands
Chemical precipitation
Chemical reactions
Computational fluid dynamics
Computer simulation
Coprecipitation
Diffraction patterns
Dilution
Evaporation
Evaporation rate
Ferrous ions
Flow rates
Flow velocity
Fluid flow
Geochemistry & Geophysics
GETFLOWS
Inlet flow
Inlets (waterways)
Ions
Iron
Mass transfer
Microorganisms
Mine drainage
Mineralogy
Mines
Mining & Mineral Processing
Oxidation
Physical Sciences
Pollutant removal
Ponds
Precipitation
quantitative modeling
Removal
Science & Technology
Sediment samplers
Sediment samples
Simulation
Simulators
Studies
surface complexation
Surface water
the three-dimensional topographic model
Uranium
Water pollution
Wetlands
X-ray diffraction
X-ray diffraction analysis
title Application of GETFLOWS Coupled with Chemical Reactions to Arsenic Removal through Ferrihydrite Coprecipitation in an Artificial Wetland of a Japanese Closed Mine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T18%3A09%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20GETFLOWS%20Coupled%20with%20Chemical%20Reactions%20to%20Arsenic%20Removal%20through%20Ferrihydrite%20Coprecipitation%20in%20an%20Artificial%20Wetland%20of%20a%20Japanese%20Closed%20Mine&rft.jtitle=Minerals%20(Basel)&rft.au=Kato,%20Tatsuya&rft.date=2020-05-01&rft.volume=10&rft.issue=5&rft.spage=475&rft.pages=475-&rft.artnum=475&rft.issn=2075-163X&rft.eissn=2075-163X&rft_id=info:doi/10.3390/min10050475&rft_dat=%3Cproquest_webof%3E2407426744%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407426744&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_d411d72b632f41b09a300614f1af1dcb&rfr_iscdi=true